Electrochemical detection Dotaz Zobrazit nápovědu
Edukační publikace se zabývá v první části luminiscenčními metodami: luminiscencí lanthanidů rozloženou v čase, luminiscencí lanthanidů zesílenou enzymem, homogenní imunoanalýzou s pohlcením luminiscence, chemiluminiscencí, elektrochemiluminiscencí (kompetitivní i sendvičové uspořádání a metoda přímé interakce) a možnostmi simultánních imunoanalýz s elektrochemiluminiscenční detekcí. Druhá část je věnována imunoanalýzám s elektrochemickou detekcí, zejména anodickou rozpouštěcí voltametrií a square-wave voltametrií. Jako značky se používají různé nanomateriály: zlato, stříbro, polovodiče (CdS, PbS, ZnS, CuS), uhlíkové nanotrubičky (plněné enzymem), apoferitin (plněný ferokyanidem nebo ionty Cd 2+ nebo Pb 2+ ), liposomy (plněné ferokyanidem), křemenné částice (s kovalentně vázaným polyguaninem, nebo plněné peroxidázou a thioninem), mikrokrystaly ferrocenu a jiné.
The first part of the educational article deals with luminescence methods as follows: lanthanide-based time-resolved luminescence, enzyme-amplified lanthanide luminescence, homogeneous immunoassays with luminescence quenching, chemiluminescence, electrochemiluminescence (competitive assay, sandwich-type assay, and direct interaction) and simultaneous immunoassays options with electrochemical luminescence detection. The second part covers immunoassays with electrochemical detection, particularly anodic stripping voltammetry and square-wave voltammetry. Many kinds of nanomaterials are used as labels, e.g. gold, silver, semiconductors (CdS, PbS, ZnS, CuS), carbon nanotubes (enzyme-loaded), apoferritin (hexacyanoferrate loaded, in some cases Cd 2+ or Pb 2+ ions are used), liposomes (hexacyanoferrate loaded), silica particles (by covalently binding polyguanine or with peroxidase & thionine loaded), ferrocene microcrystals, etc. Keywords: Lanthanide-based luminescence, chemiluminescence, electrochemiluminescence, electrochemical immunoassays, nanomaterials.
A hapten-protein conjugate with copper nanoparticles (Hap-Car-BSA@CuNPs) was first synthesized in the present work for the determination of carbaryl. The copper nanoparticles (CuNPs) of the conjugate were used as electrochemical labels in the direct solid-phase competitive determination of carbaryl residues in flour from different crops. The signal was read by linear sweep anodic stripping voltammetry (LSASV) of copper (through the electrochemical stripping of accumulated elemental copper) on a gold-graphite electrode (GGE). To form a recognition receptor layer of monoclonal antibodies against the carbaryl on the surface of the GGE, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-hydroxy-2,5-pyrrolidinedione (NHS) were used as the best covalent cross-linkers. The concentrations of the antibodies and the Hap-Car-BSA@CuNPs conjugate were optimized for carbaryl detection by the electrochemical immunosensor. The electrochemical immunosensor can be used for highly sensitive determination of carbaryl residues in flour samples in the concentration range 0.8-32.3 μg·kg-1, with a limit of detection 0.08 μg·kg-1. The present work paves the path for a novel method for monitoring carbaryl in other food products, drinks, and soil samples.
The increasing use of neonicotinoids in systematic seed treatment to crops is a serious cause of pollution of water resources and environment. Consequently, food sources can get eventually contaminated. To this end, it is desirable to develop suitable and effective platforms in order to obtain low-cost and sensitive sensors for neonicotinoids detection. In this work, graphene oxide modified electrodes were used as highly efficient electrochemical sensors for detection of two common insecticides - thiamethoxam and imidacloprid. The proposed sensor responded linearly in the concentration range of 10-200µmolL(-1) for both analytes and the detection limits were determined as low as 8.3µmolL(-1) and 7.9µmolL(-1) for thiamethoxam and imidacloprid, respectively. Analytical performance was also evaluated on spiked water and honey samples.
- MeSH
- analýza potravin ekonomika metody MeSH
- biosenzitivní techniky ekonomika metody MeSH
- chemické látky znečišťující vodu analýza MeSH
- dusíkaté sloučeniny analýza MeSH
- elektrochemické techniky ekonomika metody MeSH
- elektrody MeSH
- grafit chemie MeSH
- imidazoly analýza MeSH
- insekticidy analýza MeSH
- kontaminace potravin analýza MeSH
- limita detekce MeSH
- med analýza MeSH
- monitorování životního prostředí ekonomika metody MeSH
- oxaziny analýza MeSH
- oxidy chemie MeSH
- řeky chemie MeSH
- thiazoly analýza MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
- MeSH
- biosenzitivní techniky * metody MeSH
- elektrochemické techniky * metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A new HPLC method was developed and validated for the determination of asymmetric and symmetric dimethylarginines and l-arginine in human plasma. After SPE and evaporation of the eluate, the samples were derivatised with an o-phthaldialdehyde reagent containing 3-mercaptopropionic acid. The derivatives formed were analysed by isocratic RP-HPLC with electrochemical detection at +320 mV. The mobile phase consisted of 50 mM phosphate buffer (pH 6.1) containing 10% v/v acetonitrile, the flow rate was 1 mL/min. The retention times of all compounds including monomethylarginine (internal standard) were <24 min. The LODs (S/N 3:1) were 0.012 μM for both dimethylarginines and 0.013 μM for L-arginine; the linearity of the method was from 0.1 to 20 μM for both dimethylarginines and from 1 to 200 μM for L-arginine. Absolute extraction recoveries measured for all analytes ranged from 85 to 88%.
- MeSH
- arginin analogy a deriváty krev MeSH
- biochemická analýza krve přístrojové vybavení metody MeSH
- elektrochemické techniky * MeSH
- lidé MeSH
- limita detekce MeSH
- referenční standardy MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- MeSH
- elektrochemie metody MeSH
- finanční podpora výzkumu jako téma MeSH
- metalothionein analýza chemie MeSH
- Publikační typ
- přehledy MeSH
Proteins are generally detected as biomarkers for tracing or determining various disorders in organisms. Biomarker proteins can be tracked in samples with various origins and in different concentrations, revealing whether an organism is in a healthy or unhealthy state. In regard to detection, electrochemical biosensors are a potential fusion of electronics, chemistry, and biology, allowing for fast and early point-of-care detection from a biological sample with the advantages of high sensitivity, simple construction, and easy operation. Peptides present a promising approach as a biorecognition element when connected with electrochemical biosensors. The benefits of short peptides lie mainly in their good stability and selective affinity to a target analyte. Therefore, peptide-based electrochemical biosensors (PBEBs) represent an alternative approach for the detection of different protein biomarkers. This review provides a summary of the past decade of recently proposed PBEBs designed for protein detection, dividing them according to different protein types: (i) enzyme detection, including proteases and kinases; (ii) antibody detection; and (iii) other protein detection. According to these protein types, different sensing mechanisms are discussed, such as the peptide cleavage by a proteases, phosphorylation by kinases, presence of antibodies, and exploiting of affinities; furthermore, measurements are obtained by different electrochemical methods. A discussion and comparison of various constructions, modifications, immobilization strategies and different sensing techniques in terms of high sensitivity, selectivity, repeatability, and potential for practical application are presented.
Lactoferrin (LF) is approximately 80 kDa iron-binding protein, which is important part of saliva and other body fluids. Due to its ability to bind metal ions, it has many biologically important functions. In this study, a method for the isolation of LF from a biological sample using robotically prepared antibody-modified paramagnetic particles was developed using robotic pipetting station. The method consisted of the following optimised steps. Protein G was bound on the paramagnetic particles, on which goat antibody (10 μg) was linked. LF was subsequently added to microtitration plate, which had affinity to goat antibody and the interaction lasted for 30 min. We found that the highest signals were obtained using the combination of goat antibody 1:3000, murine antibody 1:5000 and conjugate 1:1500. Horseradish peroxidase reducing 3,3,5,5-tetramethylbenzidine (TMB) was linked to the merged complex. The resulted product of this reaction was subsequently analysed spectrometrically with detection limit (3 S/N) as 5 ng/mL. In addition, we also determined TMB by stopped flow injection analysis with electrochemical detection. The limit of detection (3 S/N) was estimated as 0.1 μg/mL. To compare spectrometric and electrochemical approach for detection of TMB, calibration range of bead-LF-antibodies complex was prepared and was determined using a least-squares correlation with coefficient R² higher than 0.95, indicating a very good agreement of the results obtained.
- MeSH
- design vybavení MeSH
- dospělí MeSH
- elektrochemické techniky přístrojové vybavení MeSH
- imobilizační protilátky chemie MeSH
- laktoferrin analýza izolace a purifikace MeSH
- lidé MeSH
- limita detekce MeSH
- magnety chemie MeSH
- průtoková injekční analýza přístrojové vybavení MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
An electrochemical genosensor for the detection and quantification of Karlodinium armiger is presented. The genosensor exploits tailed primers and ferrocene labelled dATP analogue to produce PCR products that can be directly hybridised on a gold electrode array and quantitatively measured using square wave voltammetry. Tailed primers consist of a sequence specific for the target, followed by a carbon spacer and a sequence specifically designed not to bind to genomic DNA, resulting in a duplex flanked by single stranded binding primers. The incorporation of the 7-(ferrocenylethynyl)-7-deaza-2'-deoxyadenosine triphosphate was optimised in terms of a compromise between maximum PCR efficiency and the limit of detection and sensitivity attainable using electrochemical detection via hybridisation of the tailed, ferrocene labelled PCR product. A limit of detection of 277aM with a linear range from 315aM to 10 fM starting DNA concentration and a sensitivity of 122 nA decade-1 was achieved. The system was successfully applied to the detection of genomic DNA in real seawater samples.
- MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- deoxyadeninnukleotidy chemie MeSH
- design vybavení MeSH
- DNA analýza MeSH
- elektrochemické techniky přístrojové vybavení MeSH
- limita detekce MeSH
- metaloceny chemie MeSH
- mikroelektrody MeSH
- mořská voda analýza MeSH
- oxidace-redukce MeSH
- polymerázová řetězová reakce přístrojové vybavení MeSH
- železnaté sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH