Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39697844
PubMed Central
PMC11651389
DOI
10.1021/acsapm.4c02748
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode. Scanning electron microscopy revealed a uniform distribution of conductive fillers within the composite materials with no signs of clustering or aggregation. Notably, increasing the proportion of BDD particles led to a 10-fold improvement in conductivity, from 0.12 S m-1 for TPU/CNT to 1.2 S m-1 for TPU/CNT/BDD (1:2). Cyclic voltammetry of the inorganic redox markers, [Ru(NH3)6]3+/2+ and [Fe(CN)6]3-/4-, also revealed a reduction in peak-to-peak separation (ΔE p) with a higher BDD content, indicating enhanced electron transfer kinetics. This was further confirmed by the highest apparent heterogeneous electron transfer rate constants (k 0 app) of 1 × 10-3 cm s-1 obtained for both markers for the TPU/CNT/BDD (1:2) electrode. Additionally, the functionality of the flexible TPU/CNT/BDD electrodes was successfully validated by the electrochemical detection of dopamine, a complex organic molecule, at millimolar concentrations by using differential pulse voltammetry. This proof-of-concept may accelerate development of highly desirable diamond-based flexible devices with customizable geometries and dimensions and pave the way for various applications where flexibility is mandated, such as neuroscience, biomedical fields, health, and food monitoring.
See more in PubMed
Balmer R. S.; Brandon J. R.; Clewes S. L.; Dhillon H. K.; Dodson J. M.; Friel I.; Inglis P. N.; Madgwick T. D.; Markham M. L.; Mollart T. P.; et al. Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications. J. Condens. Matter Phys. 2009, 21 (36), 364221.10.1088/0953-8984/21/36/364221. PubMed DOI
Lu Y.-J.; Lin C.-N.; Shan C.-X. Optoelectronic Diamond: Growth, Properties, and Photodetection Applications. Adv. Opt. Mater. 2018, 6 (20), 1800359.10.1002/adom.201800359. DOI
Yang N.; Yu S.; Macpherson J. V.; Einaga Y.; Zhao H.; Zhao G.; Swain G. M.; Jiang X. Conductive Diamond: Synthesis, Properties, and Electrochemical Applications. Chem. Soc. Rev. 2019, 48 (1), 157–204. 10.1039/C7CS00757D. PubMed DOI
Baluchová S.; Daňhel A.; Dejmková H.; Ostatná V.; Fojta M.; Schwarzová-Pecková K. Recent Progress in the Applications of Boron Doped Diamond Electrodes in Electroanalysis of Organic Compounds and Biomolecules - A Review. Anal. Chim. Acta 2019, 1077, 30–66. 10.1016/j.aca.2019.05.041. PubMed DOI
Zhang D.; Chi B.; Li B.; Gao Z.; Du Y.; Guo J.; Wei J. Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing. Synth. Met. 2016, 217, 79–86. 10.1016/j.synthmet.2016.03.014. DOI
Pillai A. S.; Chandran A.; Peethambharan S. K. MWCNT Ink with PEDOT:PSS as a Multifunctional Additive for Energy Efficient Flexible Heating Applications. Appl. Mater. Today 2021, 23, 100987.10.1016/j.apmt.2021.100987. DOI
Luo X.; Liu Y.; Qin R.; Ao F.; Wang X.; Zhang H.; Yang M.; Liu X. Tissue-Nanoengineered Hyperbranched Polymer Based Multifunctional Hydrogels as Flexible “Wounped Treatment-Health Monitoring” Bioelectronic Implant. Appl. Mater. Today 2022, 29, 101576.10.1016/j.apmt.2022.101576. DOI
Jeong J.-W.; Shin G.; Park Sung I.; Yu Ki J.; Xu L.; Rogers John A. Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron 2015, 86 (1), 175–186. 10.1016/j.neuron.2014.12.035. PubMed DOI
Jeong B.-Y.; Lee S.; Shin H. H.; Kwon S.; Kim S. H.; Ryu J. H.; Yoon S. M. Highly Conductive Self-Healable Rhenium Oxide-Polytetrahydrofuran Composite for Resilient Flexible Electrode. ACS Mater. Lett. 2022, 4 (10), 1944–1953. 10.1021/acsmaterialslett.2c00606. DOI
de Freitas R. C.; Fonseca W. T.; Azzi D. C.; Raymundo-Pereira P. A.; Oliveira O. N.; Janegitz B. C. Flexible Electrochemical Sensor Printed with Conductive Ink Made with Craft Glue and Graphite to Detect Drug and Neurotransmitter. Microchem. J. 2023, 191, 108823.10.1016/j.microc.2023.108823. DOI
Mahato K.; Wang J. Electrochemical Sensors: From the Bench to the Skin. Sens. Actuators B Chem. 2021, 344, 130178.10.1016/j.snb.2021.130178. DOI
Jakus A. E.; Secor E. B.; Rutz A. L.; Jordan S. W.; Hersam M. C.; Shah R. N. Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano 2015, 9 (4), 4636–4648. 10.1021/acsnano.5b01179. PubMed DOI
Lu X.; Lin R.; Zhu S.; Lin Z.; Song X.; Huang F.; Zheng W. Ultralarge Elastic Deformation (180° Fold) of Cubic-natBP Microwires for Wearable Flexible Strain Sensors. ACS Mater. Lett. 2023, 5 (8), 2282–2291. 10.1021/acsmaterialslett.3c00454. DOI
Fan B.; Zhu Y.; Rechenberg R.; Rusinek C. A.; Becker M. F.; Li W. Large-scale, All Polycrystalline Diamond Structures Transferred onto Flexible Parylene-C Films for Neurotransmitter Sensing. Lab Chip 2017, 17 (18), 3159–3167. 10.1039/C7LC00229G. PubMed DOI PMC
Hébert C.; Cottance M.; Degardin J.; Scorsone E.; Rousseau L.; Lissorgues G.; Bergonzo P.; Picaud S. Monitoring the Evolution of Boron Doped Porous Diamond Electrode on Flexible Retinal Implant by OCT and In Vivo Impedance Spectroscopy. Mater. Sci. Eng. C 2016, 69, 77–84. 10.1016/j.msec.2016.06.032. PubMed DOI
Rycewicz M.; Ficek M.; Gajewski K.; Kunuku S.; Karczewski J.; Gotszalk T.; Wlasny I.; Wysmołek A.; Bogdanowicz R. Low-Strain Sensor Based on the Flexible Boron-Doped Diamond-Polymer Structures. Carbon 2021, 173, 832–841. 10.1016/j.carbon.2020.11.071. DOI
Cardoso R. M.; Kalinke C.; Rocha R. G.; dos Santos P. L.; Rocha D. P.; Oliveira P. R.; Janegitz B. C.; Bonacin J. A.; Richter E. M.; Munoz R. A. A. Additive-manufactured (3D-printed) Electrochemical Sensors: A Critical Review. Anal. Chim. Acta 2020, 1118, 73–91. 10.1016/j.aca.2020.03.028. PubMed DOI
Crapnell R. D.; Kalinke C.; Silva L. R. G.; Stefano J. S.; Williams R. J.; Abarza Munoz R. A.; Bonacin J. A.; Janegitz B. C.; Banks C. E. Additive Manufacturing Electrochemistry: An Overview of Producing Bespoke Conductive Additive Manufacturing Filaments. Mater. Today 2023, 71, 73–90. 10.1016/j.mattod.2023.11.002. DOI
Kalsoom U.; Peristyy A.; Nesterenko P. N.; Paull B. A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices. RSC Adv. 2016, 6 (44), 38140–38147. 10.1039/C6RA05261D. DOI
Waheed S.; Cabot J. M.; Smejkal P.; Farajikhah S.; Sayyar S.; Innis P. C.; Beirne S.; Barnsley G.; Lewis T. W.; Breadmore M. C.; Paull B. Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond-Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Appl. Mater. Interfaces 2019, 11 (4), 4353–4363. 10.1021/acsami.8b18232. PubMed DOI
Kalsoom U.; Waheed S.; Paull B. Fabrication of Humidity Sensor Using 3D Printable Polymer Composite Containing Boron-Doped Diamonds and LiCl. ACS Appl. Mater. Interfaces 2020, 12 (4), 4962–4969. 10.1021/acsami.9b22519. PubMed DOI
Sartori A. F.; Belardinelli P.; Dolleman R. J.; Steeneken P. G.; Ghatkesar M. K.; Buijnsters J. G. Inkjet-Printed High-Q Nanocrystalline Diamond Resonators. Small 2019, 15 (4), 1803774.10.1002/smll.201803774. PubMed DOI
Liu Z.; Baluchová S.; Brocken B.; Ahmed E.; Pobedinskas P.; Haenen K.; Buijnsters J. G. Inkjet Printing-Manufactured Boron-Doped Diamond Chip Electrodes for Electrochemical Sensing Purposes. ACS Appl. Mater. Interfaces 2023, 15 (33), 39915–39925. 10.1021/acsami.3c04824. PubMed DOI PMC
Kondo T.; Sakamoto H.; Kato T.; Horitani M.; Shitanda I.; Itagaki M.; Yuasa M. Screen-Printed Diamond Electrode: A Disposable Sensitive Electrochemical Electrode. Electrochem. Commun. 2011, 13 (12), 1546–1549. 10.1016/j.elecom.2011.10.013. DOI
Kondo T.; Udagawa I.; Aikawa T.; Sakamoto H.; Shitanda I.; Hoshi Y.; Itagaki M.; Yuasa M. Enhanced Sensitivity for Electrochemical Detection Using Screen-Printed Diamond Electrodes via the Random Microelectrode Array Effect. Anal. Chem. 2016, 88 (3), 1753–1759. 10.1021/acs.analchem.5b03986. PubMed DOI
Matsunaga T.; Kondo T.; Shitanda I.; Hoshi Y.; Itagaki M.; Tojo T.; Yuasa M. Sensitive Electrochemical Detection of L-Cysteine at a Screen-Printed Diamond Electrode. Carbon 2021, 173, 395–402. 10.1016/j.carbon.2020.10.096. DOI
Nicholson R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37 (11), 1351–1355. 10.1021/ac60230a016. DOI
Bard A. J.; Faulkner L. R.; White H. S.. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, 2022.
Wang Y.; Lin J.; Zong R.; He J.; Zhu Y. Enhanced photoelectric catalytic degradation of methylene blue via TiO2 nanotube arrays hybridized with graphite-like carbon. J. Mol. Catal. A Chem. 2011, 349 (1), 13–19. 10.1016/j.molcata.2011.08.020. DOI
Cieślik M.; Rodak A.; Susik A.; Wójcik N.; Szociński M.; Ryl J.; Formela K. Multiple Reprocessing of Conductive PLA 3D-Printing Filament: Rheology, Morphology, Thermal and Electrochemical Properties Assessment. Materials 2023, 16, 1307.10.3390/ma16031307. PubMed DOI PMC
Park S.-H.; Hwang J.; Park G.-S.; Ha J.-H.; Zhang M.; Kim D.; Yun D.-J.; Lee S.; Lee S. H. Modeling the Electrical Resistivity of Polymer Composites with Segregated Structures. Nat. Commun. 2019, 10 (1), 2537.10.1038/s41467-019-10514-4. PubMed DOI PMC
Hohimer C. J.; Petrossian G.; Ameli A.; Mo C.; Pötschke P. 3D Printed Conductive Thermoplastic Polyurethane/Carbon Nanotube Composites for Capacitive and Piezoresistive Sensing in Soft Pneumatic Actuators. Addit. Manuf. 2020, 34, 101281.10.1016/j.addma.2020.101281. DOI
Ye X.; Hu Z.; Li X.; Wang S.; Wang B.; Zhao Y.; He J.; Liu J.; Zhang J. Effect of Annealing and Carbon Nanotube Infill on the Mechanical and Electrical Properties of Additively Manufactured Polyether-Ether-Ketone Nanocomposites via Fused Filament Fabrication. Addit. Manuf. 2022, 59, 103188.10.1016/j.addma.2022.103188. DOI
Zelenský M.; Fischer J.; Baluchová S.; Klimša L.; Kopeček J.; Vondráček M.; Fekete L.; Eidenschink J.; Matysik F. M.; Mandal S.; et al. Chem-mechanical Polishing Influenced Morphology, Spectral and Electrochemical Characteristics of Boron Doped Diamond. Carbon 2023, 203, 363–376. 10.1016/j.carbon.2022.11.069. DOI
Manzanares Palenzuela C. L.; Novotný F.; Krupička P.; Sofer Z.; Pumera M. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Anal. Chem. 2018, 90 (9), 5753–5757. 10.1021/acs.analchem.8b00083. PubMed DOI
Cardoso R. M.; Silva P. R. L.; Lima A. P.; Rocha D. P.; Oliveira T. C.; do Prado T. M.; Fava E. L.; Fatibello-Filho O.; Richter E. M.; Muñoz R. A. A. 3D-Printed Graphene/Polylactic Acid Electrode for Bioanalysis: Biosensing of Glucose and Simultaneous Determination of Uric Acid and Nitrite in Biological Fluids. Sens. Actuators B Chem. 2020, 307, 127621.10.1016/j.snb.2019.127621. DOI
Kwaczyński K.; Szymaniec O.; Bobrowska D. M.; Poltorak L. Solvent-activated 3D-printed Electrodes and their Electroanalytical Potential. Sci. Rep. 2023, 13 (1), 22797.10.1038/s41598-023-49599-9. PubMed DOI PMC
de Oliveira F. M.; de Melo E. I.; da Silva R. A. B. 3D Pen: A Low-cost and Portable Tool for Manufacture of 3D-printed Sensors. Sens. Actuators B Chem. 2020, 321, 128528.10.1016/j.snb.2020.128528. DOI
Cieślik M.; Susik A.; Banasiak M.; Bogdanowicz R.; Formela K.; Ryl J. Tailoring Diamondised Nanocarbon-Loaded Poly(lactic acid) Composites for Highly Electroactive Surfaces: Extrusion and Characterisation of Filaments for Improved 3D-Printed Surfaces. Microchim. Acta 2023, 190 (9), 370.10.1007/s00604-023-05940-7. PubMed DOI PMC
Kalinke C.; Neumsteir N. V.; Aparecido G. d. O.; Ferraz T. V. d. B.; dos Santos P. L.; Janegitz B. C.; Bonacin J. A. Comparison of Activation Processes for 3D Printed PLA-Graphene Electrodes: Electrochemical Properties and Application for Sensing of Dopamine. Analyst 2020, 145 (4), 1207–1218. 10.1039/C9AN01926J. PubMed DOI
Novotný F.; Urbanová V.; Plutnar J.; Pumera M. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Appl. Mater. Interfaces 2019, 11 (38), 35371–35375. 10.1021/acsami.9b06683. PubMed DOI
Hernández-Rodríguez J. F.; Trachioti M. G.; Hrbac J.; Rojas D.; Escarpa A.; Prodromidis M. I. Spark-Discharge-Activated 3D-Printed Electrochemical Sensors. Anal. Chem. 2024, 96 (25), 10127–10133. 10.1021/acs.analchem.4c01249. PubMed DOI PMC
Peristyy A.; Paull B.; Nesterenko P. N. Chromatographic Performance of Synthetic Polycrystalline Diamond as a Stationary Phase in Normal Phase High Performance Liquid Chromatography. J. Chromatogr. A 2015, 1391, 49–59. 10.1016/j.chroma.2015.02.069. PubMed DOI
Ghosh K.; Ng S.; Iffelsberger C.; Pumera M. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode. Chem. - Eur. J. 2020, 26 (67), 15746–15753. 10.1002/chem.202004250. PubMed DOI
Browne M. P.; Novotný F.; Sofer Z.; Pumera M. 3D Printed Graphene Electrodes’ Electrochemical Activation. ACS Appl. Mater. Interfaces 2018, 10 (46), 40294–40301. 10.1021/acsami.8b14701. PubMed DOI
Baluchová S.; Brycht M.; Taylor A.; Mortet V.; Krůšek J.; Dittert I.; Sedláková S.; Klimša L.; Kopeček J.; Schwarzová-Pecková K. Enhancing Electroanalytical Performance of Porous Boron-Doped Diamond Electrodes by Increasing Thickness for Dopamine Detection. Anal. Chim. Acta 2021, 1182, 338949.10.1016/j.aca.2021.338949. PubMed DOI