Enhancement of Apiaceae pre-germination embryo growth, mericarp ageing resilience and germination differs between hormone, gas plasma, and hydropriming technologies

. 2026 Jan 03 ; 263 (2) : 35. [epub] 20260103

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41483212

Grantová podpora
BB/M005186/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011178/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M00192X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
TSB/131600 Innovate UK
CZ.02.01.01/00/22_008/0004581 European Regional Development Fund
IGA_PrF_2025_019 Univerzita Palackého v Olomouci

Odkazy

PubMed 41483212
PubMed Central PMC12764683
DOI 10.1007/s00425-025-04900-0
PII: 10.1007/s00425-025-04900-0
Knihovny.cz E-zdroje

Enhanced Apiaceae germination performance by seed priming involves promoting pre-germination growth of the underdeveloped (small) embryos, reduction in hormone contents, and priming with abscisic acid (ABA) improved ageing resilience. Different seed priming technologies are used to improve germination performance and seedling vigour of vegetable crops. Daucus carota (carrot), Pastinaca sativa (parsnip), and other Apiaceae produce morphologically dormant single-seeded fruit halves (mericarps) as dispersal units. In mature mericarps, the underdeveloped (small) embryo is embedded in abundant endosperm tissue, and pre-germination embryo growth to a critical embryo:seed (E:S) length ratio is a requirement for the completion of germination by radicle emergence. We investigated how hydropriming and additive priming with gibberellins (GA), abscisic acid (ABA), and gas plasma-activated water (GPAW) affected carrot and parsnip mericarp germination and ageing sensitivity accessed using a wet ageing assay (80% RH, 42 °C). Carrot and parsnip mericarp priming enhanced germination speed (germination rate GR50%), maximal germination percentage (Gmax), and germination vigour. This was associated with enhanced pre-emergence embryo growth inside hydroprimed, hormone-primed, and GPAW-primed mericarps. Hydropriming affected the hormone contents and ABA sensitivity of parsnip mericarps. It reduced the contents of bioactive GAs and indole-3-acetic acid ~ 2.1 and ~ 7.7-fold, and of the germination inhibitors ABA and cis-(+)-12-oxo-phytodienoic acid ~ 9.2 and ~ 6.0-fold, respectively. Hydroprimed carrot and parsnip mericarps were more sensitive in the wet ageing assay. GPAW-priming increased carrot salinity tolerance but did not increase its wet ageing resilience to a controlled deterioration treatment (CDT). In contrast, GPAW-priming increased the wet ageing resilience of many other vegetable seeds and cereal grains. ABA-priming not only enhanced embryo growth and germination performance, it also increased the wet ageing resilience of carrot and parsnip mericarps. We conclude that ABA-priming and GPAW-priming are promising technologies to improve vigour and wet ageing resilience of primed seeds.

Zobrazit více v PubMed

Argerich CA, Bradford KJ, Tarquis AM (1989) The effects of priming and ageing on resistance to deterioration of tomato seeds. J Exp Bot 40:593–598. 10.1093/jxb/40.5.593 DOI

Attia H, Alamer K, Algethami B, Zorrig W, Hessini K, Gupta K, Gupta B (2022) Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel ( PubMed DOI PMC

Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105–1112. 10.21273/HORTSCI.21.5.1105 DOI

Bruggink H (2022) Advances in seed priming techniques. In: Buitink J, Leprince O (eds) Advances in seed science and technology for more sustainable crop production. Burleigh Dodds Science Publishing, Cambridge, pp 317–342. 10.19103/AS.2022.0105.15

Biddington NL, Thomas TH (1978) Thermodormancy in celery seeds and its removal by cytokinins and gibberellins. Physiol Plant 42:401–405. 10.1111/j.1399-3054.1978.tb04104.x DOI

Baskin JM, Baskin CM (1979) Studies on the autecology and population biology of the weedy monocarpic perennial, DOI

Brocklehurst PA, Dearman J (1983a) Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. I. Laboratory germination. Ann Appl Biol 102:577–584. 10.1111/j.1744-7348.1983.tb02729.x DOI

Brocklehurst PA, Dearman J (1983b) Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. II. Seedling emergence and plant growth. Ann Appl Biol 102:585–593. 10.1111/j.1744-7348.1983.tb02730.x DOI

Baskin CC, Baskin JM (2014) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, London

Buitink J, Leprince O (2022) Advances in understanding the genetic and environmental factors determining seed longevity. In: Buitink J, Leprince O (eds) Advances in seed science and technology for more sustainable crop production. Burleigh Dodds Science Publishing, Cambridge, pp 177–208. 10.19103/AS.2022.0105.07

Baskin CC, Baskin JM (2023) The rudimentary embryo: an early angiosperm invention that contributed to their dominance over gymnosperms. Seed Sci Res 33:63–74. 10.1017/S0960258523000168 DOI

Bruggink GT, Ooms JJJ, van der Toorn P (1999) Induction of longevity in primed seeds. Seed Sci Res 9:49–53. 10.1017/S0960258599000057 DOI

Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M (2018) Effects of low temperature plasmas and plasma activated waters on PubMed DOI PMC

Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 36:615–626. 10.1016/j.tibtech.2017.11.001 PubMed DOI

Batista TB, Fernandez GJ, da Silva TA, Maia J, da Silva EAA (2020) Transcriptome analysis in osmo-primed tomato seeds with enhanced longevity by heat shock treatment. AoB Plants 12:plaa041. 10.1093/aobpla/plaa041 PubMed DOI PMC

Chojnowski M, Corbineau F, Come D (1997) Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci Res 7:323–331. 10.1017/S096025850000372x DOI

Corbineau F (2024) The effects of storage conditions on seed deterioration and ageing: how to improve seed longevity. Seeds 3:56–75. 10.3390/seeds3010005 DOI

Chiu KY, Chen CL, Sung JM (2002) Effect of priming temperature on storability of primed DOI

Chandler JO, Haas FB, Khan S, Bowden L, Ignatz M, Enfissi EMA, Gawthrop F, Griffiths A, Fraser PD, Rensing SA, Leubner-Metzger G (2020) Rocket science: the effect of spaceflight on germination physiology, ageing, and transcriptome of PubMed DOI PMC

Corbineau F, Taskiran-Özbingöl N, El-Maarouf Bouteau H (2023) Improvement of seed quality by priming: concept and biological basis. Seeds 2:101–115. 10.3390/seeds2010008 DOI

Carta A, Vandelook F, Ramirez-Barahona S, Chen SC, Dickie J, Steinbrecher T, Thanos CA, Moles AT, Leubner-Metzger G, Mattana E (2024) The seed morphospace, a new contribution towards the multidimensional study of angiosperm sexual reproductive biology. Ann Bot 134:701–710. 10.1093/aob/mcae099 PubMed DOI PMC

Chandler JO, Wilhelmsson PKI, Fernandez-Pozo N, Graeber K, Arshad W, Pérez M, Steinbrecher T, Ullrich KK, Nguyen T-P, Mérai Z, Mummenhoff K, Theißen G, Strnad M, Mittelsten Scheid O, Schranz ME, Petřík I, Tarkowská D, Novák O, Rensing SA, Leubner-Metzger G (2024) The dimorphic diaspore model PubMed DOI PMC

Dawidowicz-Grzegorzewska A (1997) Ultrastructure of carrot seeds during matriconditioning with Micro-Cel E. Ann Bot 79:535–545. 10.1006/anbo/79.5.535 DOI

da Silva EAA, Toorop PE, Nijsse J, Bewley JD, Hilhorst HWM (2005) Exogenous gibberellins inhibit coffee ( DOI

Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA (2016) Regulation of PubMed DOI PMC

Del Bel ZD, Andrade A, Maddalena MD, Vigliocco A, Alemano S (2023) The interplay of specific hormonal profile in fruit parts of sunflower inbred lines with contrasting dormancy levels during germination and dormancy breaking by exogenous application of plant growth regulators. Crop Sci 63:852–866. 10.1002/csc2.20912 DOI

El-Araby MM, Moustafa SMA, Ismail AI, Hegazi AZA (2006) Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein petterns and anatomical seed features. Acta Agron Hung 54:441–457. 10.1556/AAgr.54.2006.4.7 DOI

Erfatpour M, Maclean D, Lahlali R, Jiang YF (2024) Ovule and seed development of crop plants in response to climate change. Front Sustain Food Syst 8:1495610. 10.3389/fsufs.2024.1495610 DOI

Finch-Savage WE, McQuistan CI (1989) The use of abscisic acid to synchronize carrot seed germination prior to fluid drilling. Ann Bot 63:195–199. 10.1093/oxfordjournals.aob.a087724 DOI

Finch-Savage WE, McQuistan CI (1991) Abscisic acid: an agent to advance and synchronise germination for tomato (

Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI

Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67:567–591. 10.1093/jxb/erv490 PubMed DOI

Furtak K, Wolinska A (2023) The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture-a review. CATENA 231:107378. 10.1016/j.catena.2023.107378 DOI

Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochem 105:147–157. 10.1016/j.phytochem.2014.05.015 DOI

Fernandez-Pascual E, Mattana E, Pritchard HW (2019) Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biol Rev 94:439–456. 10.1111/brv.12461 PubMed DOI

Fabrissin I, Sano N, Seo M, North HM (2021) Ageing beautifully: Can the benefits of seed priming be separated from a reduced lifespan trade-off? J Exp Bot 72:2312–2333. 10.1093/jxb/erab004 PubMed DOI

Fatelnig L, Chanyalew S, Tadesse M, Kebede W, Hussein N, Iza F, Tadele T, Leubner-Metzger G, Steinbrecher T (2024) Seed priming with gas plasma activated water in Ethiopia’s “orphan” crop tef ( PubMed DOI PMC

Gray D, Brocklehurst PA, Steckel JRA, Dearman J (1984) Priming and pre-germination of parsnip ( DOI

Gray D, Steckel JRA, Hands LJ (1990) Responses of vegetable seeds to controlled hydration. Ann Bot 66:227–235. 10.1093/oxfordjournals.aob.a088019 DOI

Gendreau E, Romaniello S, Barad S, Leymarie J, Benech-Arnold R, Corbineau F (2008) Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration. J Exp Bot 59:203–212. 10.1093/jxb/erm296 PubMed DOI

Groot SP, Surki AA, de Vos RC, Kodde J (2012) Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions. Ann Bot 110:1149–1159. 10.1093/aob/mcs198 PubMed DOI PMC

Garcia DI, Zhao YL, Zhao S, Ming LC, Huang DF (2021) Hydroelectrostatic hybrid priming stimulates germination performance via ABA and GA regulation: new promising evidence for tomato gene expression. Curr Plant Biol 27:100215. 10.1016/j.cpb.2021.100215 DOI

Grainge G, Nakabayashi K, Steinbrecher T, Leubner-Metzger G (2021) Gas plasma activated water seed treatment. UK Patent WO 2021(094755):A1

Gerna D, Ballesteros D, Arc E, Stöggl W, Seal CE, Marami-Zonouz N, Na CS, Kranner I, Roach T (2022) Does oxygen affect ageing mechanisms of PubMed DOI

Grainge G, Nakabayashi K, Iza F, Leubner-Metzger G, Steinbrecher T (2022a) Gas-plasma-activated water impact on photo-dependent dormancy mechanisms in PubMed DOI PMC

Grainge G, Nakabayashi K, Steinbrecher T, Kennedy S, Ren JC, Iza F, Leubner-Metzger G (2022b) Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. J Exp Bot 73:4065–4078. 10.1093/jxb/erac150 PubMed DOI PMC

Gran P, Visscher TW, Bai B, Nijveen H, Mahboubi A, Bakermans LL, Willems LAJ, Bentsink L (2025) Unravelling the dynamics of seed-stored mRNAs during seed priming. New Phytol 247:2196–2209. 10.1111/nph.70098 PubMed DOI PMC

Groot SPC, Goedhart PW, Vidigal DD, Kodde J (2025) Modelling the quantitative effect of oxygen on the ageing of primed celery seeds. Plant J 122:e70066. 10.1111/tpj.70066 PubMed DOI PMC

Guragain RP, Guragain DP, Baniya HB, Subedi DP (2025) Synergistic effects of non-thermal plasma and plasma-activated water on germination, water uptake, and early growth of diverse crop seeds. Results Eng 27:106045. 10.1016/j.rineng.2025.106045 DOI

Hendrix SD (1984) Variation in seed weight and its effects on germination in DOI

Hay FR (2022) Advances in preservation of seed vigour during storage. In: Buitink J, Leprince O (eds) Advances in seed science and technology for more sustainable crop production. Burleigh Dodds Science Publishing, Cambridge, pp 265–291. 10.19103/AS.2022.0105.11

Homrichhausen TM, Hewitt JR, Nonogaki H (2003) Endo-ß-mannanase activity is associated with the completion of embryogenesis in imbibed carrot ( DOI

Hay FR, Adams J, Manger K, Probert R (2008) The use of non-saturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol 36:737–746. 10.15258/sst.2008.36.3.23 DOI

Hawkins TS, Baskin CC, Baskin JM (2010) Morphophysiological dormancy in seeds of three eastern North American DOI

Hay FR, Valdez R, Lee JS, Cruz PCS (2019) Seed longevity phenotyping: recommendations on research methodology. J Exp Bot 70:425–434. 10.1093/jxb/ery358 PubMed DOI

Hussain S, Zheng MM, Khan F, Khaliq A, Fahad SB, Peng SB, Huang JL, Cui KH, Nie LX (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101. 10.1038/srep08101 PubMed DOI PMC

Hourston JE, Pérez M, Gawthrop F, Richards M, Steinbrecher T, Leubner-Metzger G (2020) The effects of high oxygen partial pressure on vegetable PubMed DOI PMC

Hay FR, Davies RM, Dickie JB, Merritt DJ, Wolkis DM (2022) More on seed longevity phenotyping. Seed Sci Res 32:144–149. 10.1017/S0960258522000034 DOI

Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46. 10.1016/j.jplph.2015.12.011 PubMed DOI

Ito M, Oh J-S, Ohta T, Shiratani M, Hori M (2018) Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process Polym 15:e1700073. 10.1002/ppap.201700073 DOI

Ignatz M, Hourston JE, Tureckova V, Strnad M, Meinhard J, Fischer U, Steinbrecher T, Leubner-Metzger G (2019) The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta 250:1717–1729. 10.1007/s00425-019-03257-5 PubMed DOI PMC

Jacobsen JV, Pressman E (1979) A structural study of germination in celery ( PubMed DOI

Jacobsen JV, Pressman E, Pyliotis NA (1976) Gibberellin-induced separation of cells in isolated endosperm of celery seed. Planta 129:113–122. 10.1007/BF00390017 PubMed DOI

Kadluczka D, Grzebelus E (2022) Comparative fruit morphology and anatomy of wild relatives of carrot ( DOI

Khan FA, Maqbool R, Narayan S, Bhat SA, Narayan R, Khan FU (2016) Reversal of age-indiced seed deterioration through priming in vegetable crops—a review. Adv Plants Agric Res 4:00159. 10.15406/apar.2016.04.00159 DOI

Liu M, Plunkett GM, Lowry PP, Van Wyk BE, Tilney PM (2006) The taxonomic value of fruit wing types in the order Apiales. Am J Bot 93:1357–1368. 10.3732/ajb.93.9.1357 PubMed DOI

Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033. 10.1038/srep13033 PubMed DOI PMC

Lesk C, Anderson W, Rigden A, Coast O, Jaegermeyr J, McDermid S, Davis KF, Konar M (2022) Compound heat and moisture extreme impacts on global crop yields under climate change. Nat Rev Earth Env 3:872–889. 10.1038/s43017-022-00368-8 DOI

Loades E, Perez M, Tureckova V, Tarkowska D, Strnad M, Seville A, Nakabayashi K, Leubner-Metzger G (2023) Distinct hormonal and morphological control of dormancy and germination in PubMed DOI PMC

Mirshekari B (2012) Seed priming with iron and boron enhances germination and yield of dill ( DOI

Manoharlal R, Saiprasad GVS (2019) Assessment of germination, phytochemicals, and transcriptional responses to ethephon priming in soybean [ PubMed DOI

Mahmood-ur-Rehman M, Liu JZ, Nijabat A, Alsudays IM, Saleh MA, Alamer KH, Attia H, Ziaf K, Zaman QU, Amjad M (2024) Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings. BMC Plant Biol 24:606. 10.1186/s12870-024-05292-1 PubMed DOI PMC

Nakaune M, Hanada A, Yin YG, Matsukura C, Yamaguchi S, Ezura H (2012) Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol Biochem 52:28–37. 10.1016/j.plaphy.2011.11.005 PubMed DOI

Nascimento WM, Huber DJ, Cantliffe DJ (2013) Carrot seed germination and ethylene production at high temperature in response to seed osmopriming. Hortic Bras 31:554–558. 10.1590/S0102-05362013000400008 DOI

Nakabayashi K, Fatelnig LMM, Walker M, Kennedy S, Hourston JE, Novák O, Tarkowská D, Strnad M, Gawthrop F, Steinbrecher T, Leubner-Metzger G (2025) Morphological dormancy, embryo growth and pericarp restraint during crop and wild Apiaceae mericarp germination in response to ambient temperature. Planta 262:142. 10.1007/s00425-025-04850-7 PubMed DOI PMC

Owen PL, Pill WG (1994) Germination of osmotically primed asparagus and tomato seeds after storage up to 3 months. J Am Soc Hortic Sci 119:636–641. 10.21273/Jashs.119.3.636 DOI

Olszewski MW, Pill WG, Pizzolato TD (2004) Germination and embryo anatomy of osmotically primed parsley schizocarps. J Am Soc Hortic Sci 129:876–880. 10.21273/Jashs.129.6.0876 DOI

Olszewski M, Pill W, Pizzolato TD, Pesek J (2005) Priming duration influences anatomy and germination responses of parsley mericarps. J Am Soc Hortic Sci 130:754–758. 10.21273/Jashs.130.5.754 DOI

Pill WG, Kilian EA (2000) Germination and emergence of parsley in response to osmotic or matric seed priming and treatment with gibberellin. HortScience 35:907–909. 10.21273/Hortsci.35.5.907 DOI

Porceddu M, Mattana E, Pritchard HW, Bacchetta G (2017) Dissecting seed dormancy and germination in PubMed DOI

Pedrini S, Balestrazzi A, Madsen MD, Bhalsing K, Hardegree SP, Dixon KW, Kildisheva OA (2020) Seed enhancement: getting seeds restoration-ready. Restor Ecol 28:S266–S275. 10.1111/rec.13184 DOI

Pagano A, Macovei A, Balestrazzi A (2023) Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep 42:657–688. 10.1007/s00299-023-02988-w PubMed DOI PMC

Robinson RW (1954) Seed germination problems in the Umbelliferae. Bot Rev 20:531–550. 10.1007/BF02958802 DOI

Rahimi A (2013) Seed priming improves the germination performance of cumin ( DOI

Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641. 10.1104/pp.108.123141 PubMed DOI PMC

Renard J, Ninoles R, Martinez-Almonacid I, Gayubas B, Mateos-Fernandez R, Bissoli G, Bueso E, Serrano R, Gadea J (2020) Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant Cell Environ 43:2523–2539. 10.1111/pce.13822 PubMed DOI

Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M (2021) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10:37. 10.3390/plants10010037 DOI

Reed RC, Bradford KJ, Khanday I (2022) Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128:450–459. 10.1038/s41437-022-00497-2 PubMed DOI PMC

Rawal JS, Puspa RC, Mandal A (2024) A review on seed priming to combat climate variability in agriculture. Arch Agric Environ Sci 9:593–605. 10.26832/24566632.2024.0903026 DOI

Schwember AR, Bradford KJ (2011) Oxygen interacts with priming, moisture content and temperature to affect the longevity of lettuce and onion seeds. Seed Sci Res 21:175–185. 10.1017/S0960258511000080 DOI

Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783. 10.1093/jxb/erw428 PubMed DOI

Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard ( DOI

Sheteiwy MS, Dong Q, An JY, Song WJ, Guan YJ, He F, Huang YT, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in DOI

Simura J, Antoniadi I, Siroka J, Tarkowská D, Strnad M, Ljung K, Novak O (2018) Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol 177:476–489. 10.1104/pp.18.00293 PubMed DOI PMC

Shashikanthalu SP, Ramireddy L, Radhakrishnan M (2020) Stimulation of the germination and seedling growth of DOI

Steinbrecher T, Bhattacharya S, Binder J, Kleemeier K, Przesdzink F, Groene F, Jacoblinnert K, Mummenhoff K, Leubner-Metzger G (2025a) Comparative pericarp biomechanics and germination physiology of PubMed DOI PMC

Steinbrecher T, Voegele A, Ignatz M, Weitbrecht K, Khan S, Graeber K, Hourston JE, Leubner-Metzger G (2025b) Distinct molecular biomechanical mechanisms inhibit endosperm cell-wall weakening and seed germination at cold and warm nonoptimal temperatures. Plant, Cell Environ. 10.1111/pce.70103 PubMed DOI PMC

Thomas TH (1984) Changes in endogenous cytokinins of celery ( DOI

Urbanova T, Tarkowská D, Novák O, Hedden P, Strnad M (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI

Van der Toorn P (1990) Methods to improve celery ( DOI

Van der Toorn P, Karssen CM (1992) Analysis of embryo growth in mature fruits of celery ( DOI

Vandelook F, Janssens SB, Probert RJ (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytol 195:479–487. 10.1111/j.1469-8137.2012.04172.x PubMed DOI

Visscher AM, Vandelook F, Fernandez-Pascual E, Perez-Martinez LV, Ulian T, Diazgranados M, Mattana E (2022) Low availability of functional seed trait data from the tropics could negatively affect global macroecological studies, predictive models and plant conservation. Ann Bot 130:773–784. 10.1093/aob/mcac130 PubMed DOI PMC

Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161. 10.1111/J.1365-2486.2010.02368.X DOI

Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309. 10.1093/jxb/err030 PubMed DOI

Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender-Bares J, Donohue K, Rubio de Casas R (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol 203:300–309. 10.1111/nph.12782 PubMed DOI

Wojewodzka A, Baczynski J, Banasiak L, Downie SR, Czarnocka-Cieciura A, Gierek M, Frankiewicz K, Spalik K (2019) Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae. Plant Syst Evol 305:401–414. 10.1007/s00606-019-01579-1 DOI

Walker M, Nakabayashi K, Gawthrop F, Leubner-Metzger G (2025) The initiation of embryo growth in imbibed celery mericarps marks a key mechanism by which temperature signals are integrated to regulate germination timing. J Exp Bot. 10.1093/jxb/eraf326 PubMed DOI

Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlovic I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G (2021) Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using PubMed DOI

Yan M (2017) Prolonged storage reduced the positive effect of hydropriming in Chinese cabbage seeds stored at different temperatures. S Afr J Bot 111:313–315. 10.1016/j.sajb.2017.04.005 DOI

Yang JF, Zhang WL, Wang TY, Xu JW, Wang JJ, Huang JH, Sun YP, Ni Y, Guo YJ (2025) Enhancing sweet sorghum emergence and stress resilience in saline-alkaline soils through ABA seed priming: insights into hormonal and metabolic reprogramming. BMC Genomics 26:241. 10.1186/s12864-025-11420-4 PubMed DOI PMC

Yao LH, Li SN, Zhou NN, Guo YJ (2025a) The mechanism of seed priming with abscisic acid for enhancing cuticle deposition under drought stress: phenotypic and transcriptomic insights. Agriculture 15:1124. 10.3390/agriculture15111124 DOI

Yao LH, Ni Y, Chen CJ, Xiong WD, Gan QQ, Jia XF, Jin SR, Yang JF, Guo YJ (2025b) Unlocking the synergy: ABA seed priming enhances drought tolerance in seedlings of sweet sorghum through ABA-IAA crosstalk. Plant Cell Environ 48:5952–5969. 10.1111/pce.15575 PubMed DOI

Zhang J, Liu YL, Du XM, Zhao JH, Wang JH, Li ZH (2018) Transcriptome and physiological analysis of germination in gibberellic acid-primed tobacco seeds. Int J Agric Biol 20:1768–1778. 10.17957/Ijab/15.0693 DOI

Zardari S, Ghaderi-Far F, Sadeghipour HR, Zeinali E, Soltani E, Baskin CC (2019) Deep and intermediate complex morphophysiological dormancy in seeds of DOI

Zhang KL, Yao LJ, Zhang Y, Baskin JM, Baskin CC, Xiong ZM, Tao J (2019) A review of the seed biology of PubMed DOI

Zhou RW, Zhou RS, Wang PY, Xian YB, Mai-Prochnow A, Lu XP, Cullen PJ, Ostrikov K, Bazaka K (2020) Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D Appl Phys 53:303001. 10.1088/1361-6463/ab81cf DOI

Zinsmeister J, Leprince O, Buitink J (2020) Molecular and environmental factors regulating seed longevity. Biochem J 477:305–323. 10.1042/Bcj20190165 PubMed DOI

Zhao S, Garcia DN, Zhao YL, Huang DF (2021) Hydro-electro hybrid priming promotes carrot ( PubMed DOI PMC

Zhu ZH, Sami A, Xu QQ, Wu LL, Zheng WY, Chen ZP, Jin XZ, Zhang H, Li Y, Yu Y, Zhou KJ (2021) Effects of seed priming treatments on the germination and development of two rapeseed ( PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...