Comparative pericarp biomechanics and germination physiology of Raphanus raphanistrum and Raphanus pugioniformis indehiscent fruits

. 2025 May 09 ; 135 (5) : 977-990.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39868575

Grantová podpora
BB/M02203X/1, BB/V017462/1 Biotechnology and Biological Sciences Research Council - United Kingdom
German Research Foundation's

BACKGROUND: The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently. METHODS: A multiscale biomechanics and imaging (microscopy, X-ray, finite element stress simulation, puncture force analysis) approach was used to comparatively investigate the indehiscent fruits of R. raphanistrum (global weed), R. pugioniformis (endemic weed) and R. sativus (cultivated radish). RESULTS: The hard pericarp of Raphanus species (Brassicaceae) imposes mechanical dormancy by preventing full phase-II water uptake of the enclosed seeds. The apparently unilocular fruits of Raphanus species develop from two fused valves, pericarp rupture to permit germination is confined to the midvalve regions, and each midvalve region contains a predetermined breaking zone that is biomechanically defined by the internal shape of the seed chambers. Direct biomechanical analysis revealed great variability in within-fruit and between-fruits pericarp resistances. CONCLUSIONS: Variability in pericarp-imposed dormancy provides a bet-hedging strategy to affect soil seed bank persistence and prolong the germinability period.

Zobrazit více v PubMed

Arshad W, Sperber K, Steinbrecher T, et al.2019. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). The New Phytologist 221: 1434–1446. PubMed PMC

Avino M, Kramer EM, Donohue K, Hammel AJ, Hall JC.. 2012. Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo 3: 20. PubMed PMC

Baskin CC, Baskin JM.. 2014. Seeds, ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press.

Batlla D, Ghersa CM, Benech-Arnold RL.. 2020. Dormancy, a critical trait for weed success in crop production systems. Pest Management Science 76: 1189–1194. PubMed

Bhattacharya S, Grone F, Przesdzink F, et al.2022. ‘Root of all success’: plasticity in root architecture of invasive wild radish for adaptive benefit. Frontiers in Plant Science 13: 1035089. PubMed PMC

Bobrov AVFC, Romanov MS.. 2019. Morphogenesis of fruits and types of fruit of angiosperms. Botany Letters 166: 366–399.

Brückner C. 2000. Clarification of the carpel number in Papaverales, Caparales, and Berberidaceae. The Botanical Review 66: 155–307.

Chandler JO, Wilhelmsson PKI, Fernandez-Pozo N, et al.2024. The dimorphic diaspore model Aethionema arabicum (Brassicaceae): distinct molecular and morphological control of responses to parental and germination temperatures. Plant Cell 36: 2465–2490. PubMed PMC

Collinson ME, Manchester SR, Wilde V.. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung 570: 1–249.

Cousens RD, Young KR, Tadayyon A.. 2010. The role of the persistent fruit wall in seed water regulation in Raphanus raphanistrum (Brassicaceae). Annals of Botany 105: 101–108. PubMed PMC

Dardick C, Callahan AM.. 2014. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science 5: 284. PubMed PMC

Eldridge T, Langowski L, Stacey N, et al.2016. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143: 3394–3406. PubMed PMC

Eslami SV, Gill GS, McDonald G.. 2010. Effect of water stress during seed development on morphometric characteristics and dormancy of wild radish (Raphanus raphanistrum L.) seeds. International Journal of Plant Production 4: 159–168.

Ezra Z, Levavi L, Bar -B.. 2023. The load-bearing mechanism of plant wings: a multiscale structural and mechanical analysis of the T. tipu samara. Acta Biomaterialia 158: 423–434. PubMed

Finch-Savage WE, Leubner-Metzger G.. 2006. Seed dormancy and the control of germination. The New Phytologist 171: 501–523. PubMed

Grafi G. 2020. Dead but not dead end: multifunctional role of dead organs enclosing embryos in seed biology. International Journal of Molecular Sciences 21: 8024. PubMed PMC

Hannig E. 1901. Untersuchungen über die Scheidewände der Cruciferenfrüchte. Botanische Zeitung 59: 207–245.

Heredia SM, Ellstrand NC.. 2014. Novel seed protection in the recently evolved invasive, California wild radish, a hybrid Raphanus sp. (Brassicaceae). American Journal of Botany 101: 2043–2051. PubMed

Hermann K, Meinhard J, Dobrev P, et al.2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. Journal of Experimental Botany 58: 3047–3060. PubMed

Hernandez LF, Belles PM.. 2007. A 3-D finite element analysis of the sunflower (Helianthus annuus L.) fruit. Biomechanical approach for the improvement of its hullability. Journal of Food Engineering 78: 861–869.

Hill AW. 1933. The method of germination of seeds enclosed in a stony endocarp. Annals of Botany 47: 873–887.

Hoffmann H. 1872. Ueber Raphanus-Früchte. Botanische Zeitung 30: 482–487.

Hourston JE, Steinbrecher T, Chandler JO, et al.2022. Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. Plant, Cell & Environment 45: 1315–1332. PubMed PMC

Ignatz M, Hourston JE, Tureckova V, et al.2019. The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta 250: 1717–1729. PubMed PMC

Kebaso L, Frimpong D, Iqbal N, et al.2020. Biology, ecology and management of Raphanus raphanistrum L.: a noxious agricultural and environmental weed. Environmental Science and Pollution Research International 27: 17692–17705. PubMed

Khadka J, Raviv B, Swetha B, et al.2020. Maternal environment alters dead pericarp biochemical properties of the desert annual plant Anastatica hierochuntica L. PLoS One 15: e0237045. PubMed PMC

Lazarus BS, Leung V, Luu RK, et al.2023. Jackfruit: composition, structure, and progressive collapsibility in the largest fruit on the Earth for impact resistance. Acta Biomaterialia 166: 430–446. PubMed

Li H, Li JS, Yuan H.. 2018. A review of the extended finite element method on macrocrack and microcrack growth simulations. Theoretical and Applied Fracture Mechanics 97: 236–249.

Li DD, Liu Y, Fadiji T, Li ZG, Okasha M.. 2023. Analysis of the correlation between mesocarp biomechanics and its cell turgor pressure: a combined FEM-DEM investigation for irrigation-caused tomato cracking. Journal of Texture Studies 54: 206–221. PubMed

Lu JJ, Zhou YM, Tan DY, Baskin CC, Baskin JM.. 2015. Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits. Seed Science Research 25: 276–285.

Lu JJ, Tan DY, Baskin CC, Baskin JM.. 2017a. Delayed dehiscence of the pericarp: role in germination and retention of viability of seeds of two cold desert annual Brassicaceae species. Plant Biology (Stuttgart, Germany) 19: 14–22. PubMed

Lu JJ, Tan DY, Baskin CC, Baskin JM.. 2017b. Role of indehiscent pericarp in formation of soil seed bank in five cold desert Brassicaceae species. Plant Ecology 218: 1187–1200.

Mekenian MR, Willemsen RW.. 1975. Germination characteristics of Raphanus raphanistrum. Bulletin of the Torrey Botanical Club 102: 243–252.

Mohammed S, Turckova V, Tarkowska D, Strnad M, Mummenhoff K, Leubner-Metzger G.. 2019. Pericarp-mediated chemical dormancy controls the fruit germination of the invasive hoary cress (Lepidium draba), but not of hairy whitetop (Lepidium appelianum). Weed Science 67: 560–571.

Mühlhausen A, Lenser T, Mummenhoff K, Theissen G.. 2013. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. The Plant Journal 73: 824–835. PubMed

Mummenhoff K, Polster A, Muhlhausen A, Theissen G.. 2009. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. Journal of Experimental Botany 60: 1503–1513. PubMed

Nakabayashi K, Leubner-Metzger G.. 2021. Seed dormancy and weed emergence: from simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. Journal of Experimental Botany 72: 4181–4185. PubMed PMC

Neya O, Hoekstra FA, Golovina EA.. 2008. Mechanism of endocarp-imposed constraints of germination of Lannea microcarpa seeds. Seed Science Research 18: 13–24.

Pabon-Mora N, Wong GKS, Ambrose BA.. 2014. Evolution of fruit development genes in flowering plants. Frontiers in Plant Science 5: ARTN 300. PubMed PMC

Roeder AH, Yanofsky MF.. 2006. Fruit development in Arabidopsis. The Arabidopsis book 4: e0075. PubMed PMC

Sachse R, Westermeier A, Mylo M, et al.2020. Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences of the United States of America 117: 16035–16042. PubMed PMC

Sperber K, Steinbrecher T, Graeber K, et al.2017. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nature Communications 8: 1868. PubMed PMC

Steinbrecher T, Leubner-Metzger G.. 2017. The biomechanics of seed germination. Journal of Experimental Botany 68: 765–783. PubMed

Steinbrecher T, Leubner-Metzger G.. 2018. Tissue and cellular mechanics of seeds. Current Opinion in Genetics and Development 51: 1–10. PubMed

Tricault Y, Matejicek A, Darmency H.. 2017. Variation of seed dormancy and longevity in Raphanus raphanistrum L. Seed Science Research 28: 34–40.

Vercellino RB, Pandolfo CE, Cerrota A, Cantamutto M, Presotto A.. 2019. The roles of light and pericarp on seed dormancy and germination in feral Raphanus sativus (Brassicaceae). Weed Research 59: 396–406.

Vercellino RB, Hernandez F, Presotto A.. 2023. The role of intraspecific crop-weed hybridization in the evolution of weediness and invasiveness: cultivated and weedy radish (Raphanus sativus) as a case study. American Journal of Botany 110: e16217. PubMed

Waggoner HD. 1917. The viability of radish seeds (Raphanus sativus L.) as affected by high temperatures and water content. American Journal of Botany 4: 299–313.

Wasserstrom H, Ziffer-Berger J, Barzilai M, Mummenhoff K, Barazani O.. 2022. Phenotypic variation of wild radishes Raphanus pugioniformis and R. raphanistrum associated with local conditions in the southeast Mediterranean. Flora 287: 151997.

Weitbrecht K, Müller K, Leubner-Metzger G.. 2011. First off the mark: early seed germination. Journal of Experimental Botany 62: 3289–3309. PubMed

Wu Y, Sun XR, Pritchard HW, Shen YB, Wu XQ, Peng CY.. 2023. The metagenomics of soil bacteria and fungi and the release of mechanical dormancy in hard seeds. Frontiers in Plant Science 14: 1187614. PubMed PMC

Zhou YM, Lu JJ, Tan DY, Baskin CC, Baskin JM.. 2015. Seed germination ecology of the cold desert annual Isatis violascens (Brassicaceae): two levels of physiological dormancy and role of the pericarp. PLoS One 10: e0140983. PubMed PMC

Ziffer-Berger J, Waitz Y, Behar E, et al.2020. Seed dispersal of wild radishes and its association with within-population spatial distribution. BMC Ecology 20: 30. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...