Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds

. 2018 Aug 27 ; 19 (9) : . [epub] 20180827

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30150593

: Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.

Zobrazit více v PubMed

Wasternack C., Feussner I. The oxylipin pathways: Biochemistry and function. Annu. Rev. Entomol. 2018;69:363–386. doi: 10.1146/annurev-arplant-042817-040440. PubMed DOI

Wasternack C. How jasmonates earned their laurels: Past and present. J. Plant Growth Regul. 2015;34:761–794. doi: 10.1007/s00344-015-9526-5. DOI

Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC

Kazan K., Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 2014;26:2285–2309. doi: 10.1105/tpc.114.125419. PubMed DOI PMC

Schuman M.C., Baldwin I.T. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 2016;61:373–394. doi: 10.1146/annurev-ento-010715-023851. PubMed DOI

Goossens J., Mertens J., Goossens A. Role and functioning of bHLH transcription factors in jasmonate signalling. J. Exp. Bot. 2017;68:1333–1347. doi: 10.1093/jxb/erw440. PubMed DOI

Wasternack C., Song S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 2017;68:1303–1321. doi: 10.1093/jxb/erw443. PubMed DOI

Zhai Q., Yan C., Li L., Xie D., Li C. Jasmonates. Elsevier; New York City, NY, USA: 2018. pp. 243–272.

Howe G.A., Major I.T., Koo A.J. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Entomol. 2018;69:387–415. doi: 10.1146/annurev-arplant-042817-040047. PubMed DOI

Nishiyama T., Sakayama H., de Vries J., Buschmann H., Saint-Marcoux D., Ullrich K.K., Haas F.B., Vanderstraeten L., Becker D., Lang D., et al. The chara genome: Secondary complexity and implications for plant terrestrialization. Cell. 2018;174:448–464.e24. doi: 10.1016/j.cell.2018.06.033. PubMed DOI

Bowman J.L., Kohchi T., Yamato K.T., Jenkins J., Shu S., Ishizaki K., Yamaoka S., Nishihama R., Nakamura Y., Berger F., et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 2017;171:287–304.e15. doi: 10.1016/j.cell.2017.09.030. PubMed DOI

Han G.-Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 2017;68:1323–1331. doi: 10.1093/jxb/erw470. PubMed DOI

Demole E., Lederer E., Mercier D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helv. Chim. Acta. 1962;45:675–685. doi: 10.1002/hlca.19620450233. DOI

Aldrige D., Galt S., Giles D., Turner W. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. 1971:1623–1627. doi: 10.1039/j39710001623. DOI

Miersch O., Preiss A., Sembdner G., Schreiber K. (+)-7-iso-jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochemistry. 1987;26:1037–1039. doi: 10.1016/S0031-9422(00)82345-6. DOI

Miersch O., Schmidt J., Sembdner G., Schreiber K. Jasmonic acid-like substances from the culture filtrate of Botryodiplodia theobromae. Phytochemistry. 1989;28:1303–1305. doi: 10.1016/S0031-9422(00)97735-5. DOI

Andolfi A., Maddau L., Cimmino A., Linaldeddu B.T., Basso S., Deidda A., Serra S., Evidente A. Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry. 2014;103:145–153. doi: 10.1016/j.phytochem.2014.03.016. PubMed DOI

Chini A., Cimmino A., Masi M., Reveglia P., Nocera P., Solano R., Evidente A. The fungal phytotoxin lasiojasmonate a activates the plant jasmonic acid pathway. J. Exp. Bot. 2018;69:3095–3102. doi: 10.1093/jxb/ery114. PubMed DOI PMC

Eng F., Zienkiewicz K., Gutiérrez-Rojas M., Favela-Torres E., Feussner I. Jasmonic acid biosynthesis by microorganisms: Derivatives, first evidences on biochemical pathways and culture conditions for production. PeerJ Prepr. 2018;6:e26655v1. PubMed PMC

Miersch O., Bohlmann H., Wasternack C. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry. 1999;50:517–523. doi: 10.1016/S0031-9422(98)00596-2. DOI

Oliw E., Hamberg M. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum. J. Lipid Res. 2017;58:1670–1680. doi: 10.1194/jlr.M077305. PubMed DOI PMC

Yamamoto Y., Ohshika J., Takahashi T., Ishizaki K., Kohchi T., Matusuura H., Takahashi K. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry. 2015;116:48–56. doi: 10.1016/j.phytochem.2015.03.008. PubMed DOI

Stumpe M., Göbel C., Faltin B., Beike A.K., Hause B., Himmelsbach K., Bode J., Kramell R., Wasternack C., Frank W., et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: Mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 2010;188:740–749. doi: 10.1111/j.1469-8137.2010.03406.x. PubMed DOI

Ogorodnikova A.V., Mukhitova F.K., Grechkin A.N. Oxylipins in the spikemoss selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. Phytochemistry. 2015;118:42–50. doi: 10.1016/j.phytochem.2015.08.003. PubMed DOI

Pratiwi P., Tanaka G., Takahashi T., Xie X., Yoneyama K., Matsuura H., Takahashi K. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol. 2017;58:789–801. doi: 10.1093/pcp/pcx031. PubMed DOI

Monte I., Ishida S., Zamarreño A.M., Hamberg M., Franco-Zorrilla J.M., García-Casado G., Gouhier-Darimont C., Reymond P., Takahashi K., García-Mina J.M., et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 2018;14:480–488. doi: 10.1038/s41589-018-0033-4. PubMed DOI

Novák O., Napier R., Ljung K. Zooming in on plant hormone analysis: Tissue- and cell-specific approaches. Annu. Rev. Entomol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Meyer A., Miersch O., Büttner C., Dathe W., Sembdner G. Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 1984;3:1–8. doi: 10.1007/BF02041987. DOI

Floková K., Feussner K., Herrfurth C., Miersch O., Tarkowská D., Strnad M., Feussner I., Wasternack C., Novák O. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana-The identification of cis-(+)-opda-ile. Phytochemistry. 2015;122:230–237. doi: 10.1016/j.phytochem.2015.11.012. PubMed DOI

Arnold M., Gruber C., Floková K., Miersch O., Strnad M., Novák O., Wasternack C., Hause B. The recently identified isoleucine conjugate of cis-12-oxo-phytodienoic acid is partially active in cis-12-oxo-phytodienoic acid-specific gene expression of Arabidopsis thaliana. PLoS ONE. 2016;11:e0162829. doi: 10.1371/journal.pone.0162829. PubMed DOI PMC

Uchiyama A., Yaguchi T., Nakagawa H., Sasaki K., Kuwata N., Matsuura H., Takahashi K. Biosynthesis and in vitro enzymatic synthesis of the isoleucine conjugate of 12-oxo-phytodienoic acid from the isoleucine conjugate of α-linolenic acid. Bioorg. Med. Chem. Lett. 2018;28:1020–1023. doi: 10.1016/j.bmcl.2018.02.030. PubMed DOI

Vick B.A., Zimmerman D.C. The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenase. Biochem. Biophys. Res. Comm. 1983;111:470–477. doi: 10.1016/0006-291X(83)90330-3. PubMed DOI

Chini A., Monte I., Zamarreño A.M., Hamberg M., Lassueur S., Reymond P., Weiss S., Stintzi A., Schaller A., Porzel A., et al. An opr3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 2018;14:171–178. doi: 10.1038/nchembio.2540. PubMed DOI

Browse J. Jasmonate passes muster: A receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 2009;60:183–205. doi: 10.1146/annurev.arplant.043008.092007. PubMed DOI

Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta. 2012;236:1351–1366. doi: 10.1007/s00425-012-1705-z. PubMed DOI

Ishiguro S., Kwai-Oda A., Ueda J., Nishida I., Okada K. The defective in anther dehiscence1 gene encodes a novel phospholipase a1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation. Plant Cell. 2001;13:2191–2209. doi: 10.1105/tpc.13.10.2191. PubMed DOI PMC

Lin Y.-T., Chen L.-J., Herrfurth C., Feussner I., Li H.-M. Reduced biosynthesis of digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin overproduction and phloem cap lignification in arabidopsis. Plant Cell. 2016;28:219–232. PubMed PMC

Li H.-M., Yu C.-W. Chloroplast galactolipids: The link between photosynthesis, chloroplast shape, jasmonates, phosphate starvation and freezing tolerance. Plant Cell Physiol. 2018;59:1128–1134. doi: 10.1093/pcp/pcy088. PubMed DOI

Wang K., Froehlich J.E., Zienkiewicz A., Hersh H.L., Benning C. A plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis. Plant Cell. 2017;29:1678–1696. doi: 10.1105/tpc.17.00397. PubMed DOI PMC

Wang K., Guo Q., Froehlich J.E., Hersh H.L., Zienkiewicz A., Howe G.A., Benning C. Two abscisic acid responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell. 2018;30:1006–1022. doi: 10.1105/tpc.18.00250. PubMed DOI PMC

O’Donnell P., Calvert C., Atzorn R., Wasternack C., Leyser H., Bowles D. Ethylene as a signal mediating the wound response of tomato plants. Science. 1996;274:1914–1917. doi: 10.1126/science.274.5294.1914. PubMed DOI

Shen J., Tieman D., Jones A., Taylor M., Schmelz E., Huffaker A., Bies D., Chen K., Klee H. A13-lipoxygenase, tomloxc, is essential for synthesis of c5 flavour volatiles in tomato. J. Exp. Bot. 2014;65:419–428. doi: 10.1093/jxb/ert382. PubMed DOI PMC

Yan L., Zhai Q., Wei J., Li S., Wang B., Huang T., Du M., Sun J., Kang L., Li C.-B., et al. Role of tomato lipoxygenase d in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 2013;9:e1003964. doi: 10.1371/journal.pgen.1003964. PubMed DOI PMC

Chen Z., Chen X., Yan H., Li W., Li Y., Cai R., Xiang Y. The lipoxygenase gene family in poplar: Identification, classification, and expression in response to meja treatment. PLoS ONE. 2015;10:e0125526. doi: 10.1371/journal.pone.0125526. PubMed DOI PMC

Zhang X., Bao Y., Shan D., Wang Z., Song X., Wang Z., Wang J., He L., Wu L., Zhang Z., et al. Magnaporthe oryzae defeats rice defense by inducing miR319B and suppressing jasmonic acid signaling. Plant Physiol. 2018 doi: 10.1104/pp.17.01665. PubMed DOI PMC

Christensen S.A., Huffaker A., Kaplan F., Sims J., Ziemann S., Doehlemann G., Ji L., Schmitz R.J., Kolomiets M.V., Alborn H.T., et al. Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc. Natl. Acad. Sci. USA. 2015;112:11407–11412. doi: 10.1073/pnas.1511131112. PubMed DOI PMC

Grebner W., Stingl N.E., Oenel A., Mueller M.J., Berger S. Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of arabidopsis. Plant Physiol. 2013;161:2159–2170. doi: 10.1104/pp.113.214544. PubMed DOI PMC

Ding H., Lai J., Wu Q., Zhang S., Chen L., Dai Y.-S., Wang C., Du J., Xiao S., Yang C. Jasmonate complements the function of arabidopsis lipoxygenase3 in salinity stress response. Plant Sci. 2016;244:1–7. doi: 10.1016/j.plantsci.2015.11.009. PubMed DOI

Ozalvo R., Cabrera J., Escobar C., Christensen S.A., Borrego E.J., Kolomiets M.V., Castresana C., Iberkleid I., Brown Horowitz S. Two closely related members of arabidopsis 13-lipoxygenases (13-loxs), lox3 and lox4, reveal distinct functions in response to plant-parasitic nematode infection. Mol. Plant Pathol. 2014;15:319–332. doi: 10.1111/mpp.12094. PubMed DOI PMC

Chauvin A., Lenglet A., Wolfender J.-L., Farmer E.E. Paired hierarchical organization of 13-lipoxygenases in arabidopsis. Plants. 2016;5:16. doi: 10.3390/plants5020016. PubMed DOI PMC

Schommer C., Palatnik J.F., Aggarwal P., Chételat A., Cubas P., Farmer E.E., Nath U., Weigel D. Control of jasmonate biosynthesis and senescence by mir319 targets. PLoS Biol. 2008;6:e230. doi: 10.1371/journal.pbio.0060230. PubMed DOI PMC

Freire M., Tourneur C., Granier F., Camonis J., Amrani A.E., Browning K., Robaglia C. Plant lipoxygenase 2 is a translation initiation factor-4e-binding protein. Plant Mol. Biol. 2000;44:129–140. doi: 10.1023/A:1006494628892. PubMed DOI

Zhou G., Ren N., Qi J., Lu J., Xiang C., Ju H., Cheng J., Lou Y. The 9-lipoxygenase osr9-lox1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol. Plant. 2014;152:59–69. doi: 10.1111/ppl.12148. PubMed DOI

Brodhun F., Cristobal-Sarramian A., Zabel S., Newie J., Hamberg M., Feussner I. An iron 13s-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS ONE. 2013;8:e64919. doi: 10.1371/journal.pone.0064919. PubMed DOI PMC

Newcomer M.E., Brash A.R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci. 2015;24:298–309. doi: 10.1002/pro.2626. PubMed DOI PMC

Newie J., Andreou A., Neumann P., Einsle O., Feussner I., Ficner R. Crystal structure of a lipoxygenase from cyanothece sp. May reveal novel features for substrate acquisition. J. Lipid Res. 2016;57:276–287. doi: 10.1194/jlr.M064980. PubMed DOI PMC

Feussner I., Wasternack C. The lipoxygenase pathway. Annu. Rev. Plant Biol. 2002;53:275–297. doi: 10.1146/annurev.arplant.53.100301.135248. PubMed DOI

Schaller A., Stintzi A. Enzymes in jasmonate biosynthesis—Structure, function, regulation. Phytochemistry. 2009;70:1532–1538. doi: 10.1016/j.phytochem.2009.07.032. PubMed DOI

Park J.-H., Halitschke R., Kim H., Baldwin I., Feldmann K., Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 2002;31:1–12. doi: 10.1046/j.1365-313X.2002.01328.x. PubMed DOI

Lee D.-S., Nioche P., Hamberg M., Raman C.S. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature. 2008;455:363–368. doi: 10.1038/nature07307. PubMed DOI

Koeduka T., Ishizaki K., Mwenda C.M., Hori K., Sasaki-Sekimoto Y., Ohta H., Kohchi T., Matsui K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta. 2015;242:1175–1186. doi: 10.1007/s00425-015-2355-8. PubMed DOI

Scholz J., Brodhun F., Hornung E., Herrfurth C., Stumpe M., Beike A., Faltin B., Frank W., Reski R., Feussner I. Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol. 2012;12:228. doi: 10.1186/1471-2229-12-228. PubMed DOI PMC

Toporkova Y.Y., Gorina S.S., Bessolitsyna E.K., Smirnova E.O., Fatykhova V.S., Brühlmann F., Ilyina T.M., Mukhtarova L.S., Grechkin A.N. Double function hydroperoxide lyases/epoxyalcohol synthases (Cyp74c) of higher plants: Identification and conversion into allene oxide synthases by site-directed mutagenesis. Biochim. Biophys. Acta. 2018;1863:369–378. doi: 10.1016/j.bbalip.2018.01.002. PubMed DOI

Chen Y., Jernerén F., Oliw E.H. Purification and site-directed mutagenesis of linoleate 9s-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism. Arch. Biochem. Biophys. 2017;625–626:24–29. doi: 10.1016/j.abb.2017.05.007. PubMed DOI

Yoeun S., Rakwal R., Han O. Dual positional substrate specificity of rice allene oxide synthase-1: Insight into mechanism of inhibition by type ii ligand imidazole. BMB Rep. 2013;46:151–156. doi: 10.5483/BMBRep.2013.46.3.117. PubMed DOI PMC

Maucher H., Hause B., Feussner I., Ziegler J., Wasternack C. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): Tissue specific regulation in seedling development. Plant J. 2000;21:199–213. doi: 10.1046/j.1365-313x.2000.00669.x. PubMed DOI

Liu X., Li F., Tang J., Wang W., Zhang F., Wang G., Chu J., Yan C., Wang T., Chu C., et al. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase oshpl3 reveals crosstalk between the hpl and aos branches of the oxylipin pathway in rice. PLoS ONE. 2012;7:e50089. doi: 10.1371/journal.pone.0050089. PubMed DOI PMC

Hibara K.-I., Isono M., Mimura M., Sentoku N., Kojima M., Sakakibara H., Kitomi Y., Yoshikawa T., Itoh J.-I., Nagato Y. Jasmonate regulates juvenile-to-adult phase transition in rice. Development. 2016;143:3407–3416. doi: 10.1242/dev.138602. PubMed DOI

Grechkin A.N., Ogorodnikova A.V., Egorova A.M., Mukhitova F.K., Ilyina T.M., Khairutdinov B. Allene oxide synthase pathway in cereal roots: Detection of novel oxylipin graminoxins. ChemistryOpen. 2018;7:336–343. doi: 10.1002/open.201800045. PubMed DOI PMC

Hofmann E., Pollmann S. Molecular mechanism of enzymatic allene oxide cyclization in plants. Plant Physiol. Biochem. 2008;46:302–308. doi: 10.1016/j.plaphy.2007.12.007. PubMed DOI

Hofmann E., Zerbe P., Schaller F. The crystal structure of Arabidopsis thaliana allene oxide cyclase: Insights into the oxylipin cyclization reaction. Plant Cell. 2006;18:3201–3217. doi: 10.1105/tpc.106.043984. PubMed DOI PMC

Neumann P., Brodhun F., Sauer K., Herrfurth C., Hamberg M., Brinkmann J., Scholz J., Dickmanns A., Feussner I., Ficner R. Crystal structures of Physcomitrella patens aoc1 and aoc2: Insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol. 2012;160:1251–1266. doi: 10.1104/pp.112.205138. PubMed DOI PMC

Stenzel I., Hause B., Maucher H., Pitzschke A., Miersch O., Ziegler J., Ryan C., Wasternack C. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato-amplification in wound signaling. Plant J. 2003;33:577–589. doi: 10.1046/j.1365-313X.2003.01647.x. PubMed DOI

Gu X.-C., Chen J.-F., Xiao Y., Di P., Xuan H.-J., Zhou X., Zhang L., Chen W.-S. Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in salvia miltiorrhiza. Plant Cell Rep. 2012;31:2247–2259. doi: 10.1007/s00299-012-1334-9. PubMed DOI

Zhao Y., Dong W., Zhang N., Ai X., Wang M., Huang Z., Xiao L., Xia G. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 2014;164:1068–1076. doi: 10.1104/pp.113.227595. PubMed DOI PMC

Riemann M., Haga K., Shimizu T., Okada K., Ando S., Mochizuki S., Nishizawa Y., Yamanouchi U., Nick P., Yano M., et al. Identification of rice Allene oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 2013;74:226–238. doi: 10.1111/tpj.12115. PubMed DOI

Hazman M., Hause B., Eiche E., Nick P., Riemann M. Increased tolerance to salt stress in OPDA-deficient rice allene oxide cyclase mutants is linked to an increased ROS-scavenging activity. J. Exp. Bot. 2015;66:3339–3352. doi: 10.1093/jxb/erv142. PubMed DOI PMC

Dhakarey R., Raorane M.L., Treumann A., Peethambaran P.K., Schendel R.R., Sahi V.P., Hause B., Bunzel M., Henry A., Kohli A., et al. Physiological and proteomic analysis of the rice mutant cpm2 suggests a negative regulatory role of jasmonic acid in drought tolerance. Front. Plant Sci. 2017;8:1903. doi: 10.3389/fpls.2017.01903. PubMed DOI PMC

Stenzel I., Otto M., Delker C., Kirmse N., Schmidt D., Miersch O., Hause B., Wasternack C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: Tissue- and organ-specific promoter activities and in vivo heteromerization. J. Exp. Bot. 2012;63:6125–6138. doi: 10.1093/jxb/ers261. PubMed DOI PMC

Otto M., Naumann C., Brandt W., Wasternack C., Hause B. Activity regulation by heteromerization of arabidopsis allene oxide cyclase family members. Plants. 2016;5:3. doi: 10.3390/plants5010003. PubMed DOI PMC

Le T.B., Han C.S., Cho K., Han O. Covalent immobilization of oxylipin biosynthetic enzymes on nanoporous rice husk silica for production of cis (+)-12-oxophytodienoic acid. Artif. Cells Nanomed. Biotechnol. 2017;11:1–7. doi: 10.1080/21691401.2017.1375939. PubMed DOI

Maynard D., Müller S.M., Hahmeier M., Löwe J., Feussner I., Gröger H., Viehhauser A., Dietz K.-J. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid. Bioorg. Med. Chem. 2018;26:1356–1364. doi: 10.1016/j.bmc.2017.07.061. PubMed DOI

De Marcos Lousa C., van Roermund C.W.T., Postis V.L.G., Dietrich D., Kerr I.D., Wanders R.J.A., Baldwin S.A., Baker A., Theodoulou F.L. Intrinsic acyl-coa thioesterase activity of a peroxisomal atp binding cassette transporter is required for transport and metabolism of fatty acids. Proc. Natl. Acad. Sci. USA. 2013;110:1279–1284. doi: 10.1073/pnas.1218034110. PubMed DOI PMC

Theodoulou F.L., Job K., Slocombe S.P., Footitt S., Holdsworth M., Baker A., Larson T.R., Graham I.A. Jasmonic acid levels are reduced in comatose atp-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 2005;137:835–840. doi: 10.1104/pp.105.059352. PubMed DOI PMC

Li W., Zhou F., Liu B., Feng D., He Y., Qi K., Wang H., Wang J. Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acid reductase gene family in rice. Plant Cell Rep. 2011;30:981–995. doi: 10.1007/s00299-011-1002-5. PubMed DOI

Sanders P., Lee P., Biesgen C., Boone J., Beals T., Weiler E., Goldberg R. The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell. 2000;12:1041–1061. doi: 10.1105/tpc.12.7.1041. PubMed DOI PMC

Stintzi A., Browse J. The arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA. 2000;97:10625–10630. doi: 10.1073/pnas.190264497. PubMed DOI PMC

Song S., Qi T., Huang H., Ren Q., Wu D., Chang C., Peng W., Liu Y., Peng J., Xie D. The jasmonate-zim domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in arabidopsis. Plant Cell. 2011;23:1000–1013. doi: 10.1105/tpc.111.083089. PubMed DOI PMC

Qi T., Huang H., Song S., Xie D. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-myb complex in arabidopsis. Plant Cell. 2015;27:1620–1633. doi: 10.1105/tpc.15.00116. PubMed DOI PMC

Chehab E.W., Kim S., Savchenko T., Kliebenstein D., Dehesh K., Braam J. Intronic t-DNA insertion renders arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol. 2011;156:770–778. doi: 10.1104/pp.111.174169. PubMed DOI PMC

Zheng H., Pan X., Deng Y., Wu H., Liu P., Li X. Atopr3 specifically inhibits primary root growth in arabidopsis under phosphate deficiency. Sci. Rep. 2016;6:24778. doi: 10.1038/srep24778. PubMed DOI PMC

Hu J., Baker A., Bartel B., Linka N., Mullen R.T., Reumann S., Zolman B.K. Plant peroxisomes: Biogenesis and function. Plant Cell. 2012;24:2279–2303. doi: 10.1105/tpc.112.096586. PubMed DOI PMC

Miersch O., Wasternack C. Octadecanoid and jasmonate signaling in tomato (Lycopersicon esculentum mill.) leaves: Endogenous jasmonates do not induce jasmonate biosynthesis. Biol. Chem. 2000;381:715–722. doi: 10.1515/BC.2000.092. PubMed DOI

Li C., Schilmiller A.L., Liu G., Lee G.I., Jayanty S., Sageman C., Vrebalov J., Giovannoni J.J., Yagi K., Kobayashi Y., et al. Role of b-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell. 2005;17:971–986. doi: 10.1105/tpc.104.029108. PubMed DOI PMC

Schilmiller A.L., Koo A.J.K., Howe G.A. Functional diversification of acyl-coenzyme a oxidases in jasmonic acid biosynthesis and action. Plant Physiol. 2007;143:812–824. doi: 10.1104/pp.106.092916. PubMed DOI PMC

Richmond T., Bleecker A. A defect in b-oxidation causes abnormal inflorescence development in arabidopsis. Plant Cell. 1999;11:1911–1923. doi: 10.2307/3871086. PubMed DOI PMC

Castillo M.C., Martinez C., Buchala A., Metraux J.-P., Leon J. Gene-specific involvement of b-oxidation in wound-activated responses in arabidopsis. Plant Physiol. 2004;135:85–94. doi: 10.1104/pp.104.039925. PubMed DOI PMC

Schneider K., Kienow L., Schmelzer E., Colby T., Bartsch M., Miersch O., Wasternack C., Kombrink E., Stuible H.-P. A new type of peroxisomal acyl-coenzyme a synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J. Biol. Chem. 2005;280:13962–13972. doi: 10.1074/jbc.M413578200. PubMed DOI

Wiszniewski A.A.G., Bussell J.D., Long R.L., Smith S.M. Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-coa thiolases in arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype. J. Exp. Bot. 2014;65:6723–6733. doi: 10.1093/jxb/eru397. PubMed DOI PMC

Howe G.A. Metabolic end run to jasmonate. Nat. Chem. Biol. 2018;14:109–110. doi: 10.1038/nchembio.2553. PubMed DOI

Wasternack C., Hause B. A bypass in jasmonate biosynthesis—The OPR3-independent formation. Trends Plant Sci. 2018;23:276–279. doi: 10.1016/j.tplants.2018.02.011. PubMed DOI

Scholz S.S., Reichelt M., Boland W., Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. Plant Sci. 2015;239:9–14. doi: 10.1016/j.plantsci.2015.06.024. PubMed DOI

Liu C.C., Ahammed G.J., Wang G.T., Xu C.J., Chen K.S., Zhou Y.H., Yu J.Q. Tomato cry1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits. Plant Cell Environ. 2018;41:354–366. doi: 10.1111/pce.13092. PubMed DOI

Bonaventure G., Gfeller A., Proebsting W.M., Hortensteiner S., Chetelat A., Martinoia E., Farmer E.E. A gain-of-function allele of tpc1 activates oxylipin biogenesis after leaf wounding in arabidopsis. Plant J. 2007;49:889–898. doi: 10.1111/j.1365-313X.2006.03002.x. PubMed DOI

Ibrahim A., Schütz A.-L., Galano J.-M., Herrfurth C., Feussner K., Durand T., Brodhun F., Feussner I. The alphabet of galactolipids in Arabidopsis thaliana. Front. Plant Sci. 2011;2:95. doi: 10.3389/fpls.2011.00095. PubMed DOI PMC

Yu H., Shiva S., Roth M., Tamura P., Zheng L., Li M., Sarowar S., Honey S., McEllhiney D., Hinkes P., et al. Lipid changes after leaf wounding in Arabidopsis thaliana: Expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J. 2014;80:728–743. PubMed

Göbel C., Feussner I. Methods for the analysis of oxylipins in plants. Phytochemistry. 2009;70:1485–1503. doi: 10.1016/j.phytochem.2009.07.040. PubMed DOI

Stelmach B., Müller A., Hennig P., Gebhardt S., Schubert-Zsilavecz M., Weiler E. A novel class of oxylipins, sn1-o-(12-oxophytodienoyl)-sn2-o-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J. Biol. Chem. 2001;276:12832–12838. doi: 10.1074/jbc.M010743200. PubMed DOI

Koo A.J.K., Gao X., Jones A.D., Howe G.A. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in arabidopsis. Plant J. 2009;59:974–986. doi: 10.1111/j.1365-313X.2009.03924.x. PubMed DOI

Kourtchenko O., Andersson M.X., Hamberg M., Brunnstrom A., Gobel C., McPhail K.L., Gerwick W.H., Feussner I., Ellerstrom M. Oxo-phytodienoic acid-containing galactolipids in arabidopsis: Jasmonate signaling dependence. Plant Physiol. 2007;145:1658–1669. doi: 10.1104/pp.107.104752. PubMed DOI PMC

Andersson M.X., Hamberg M., Kourtchenko O., Brunnstrom A., McPhail K.L., Gerwick W.H., Gobel C., Feussner I., Ellerstrom M. Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: Formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside e. J. Biol. Chem. 2006;281:31528–31537. doi: 10.1074/jbc.M604820200. PubMed DOI

Glauser G., Dubugnon L., Mousavi S.A.R., Rudaz S., Wolfender J.-L., Farmer E.E. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded arabidopsis. J. Biol. Chem. 2009;284:34506–34513. doi: 10.1074/jbc.M109.061432. PubMed DOI PMC

Nilsson A.K., Fahlberg P., Ellerström M., Andersson M.X. Oxo-phytodienoic acid (opda) is formed on fatty acids esterified to galactolipids after tissue disruption in Arabidopsis thaliana. FEBS Lett. 2012;586:2483–2487. doi: 10.1016/j.febslet.2012.06.010. PubMed DOI

Pedras M.S.C., To Q.H. Defense and signalling metabolites of the crucifer erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins. Phytochemistry. 2017;139:18–24. doi: 10.1016/j.phytochem.2017.03.005. PubMed DOI

Nilsson A.K., Fahlberg P., Johansson O.N., Hamberg M., Andersson M.X., Ellerström M. The activity of hydroperoxide lyase 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in arabidopsis. J. Exp. Bot. 2016;67:5133–5144. doi: 10.1093/jxb/erw278. PubMed DOI PMC

Nilsson A.K., Johansson O.N., Fahlberg P., Kommuri M., Töpel M., Bodin L.J., Sikora P., Modarres M., Ekengren S., Nguyen C.T., et al. Acylated monogalactosyl diacylglycerol: Prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana. Plant J. 2015;84:1152–1166. doi: 10.1111/tpj.13072. PubMed DOI

Böttcher C., Weiler E. Cyclo-oxylipin-galactolipids in plants: Occurrence and dynamics. Planta. 2007;226:629–637. doi: 10.1007/s00425-007-0511-5. PubMed DOI

Hartley S.E., Eschen R., Horwood J.M., Gange A.C., Hill E.M. Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, cirsium arvense. New Phytol. 2015;205:816–827. doi: 10.1111/nph.13067. PubMed DOI

Ueda J., Miyamoto K., Aoki M., Hirata T., Sato T., Momotani Y. Identification of jasmonic acid in chlorella and spirulina. Bull. Univ. Osaka Pref. 1991;23:103–108.

Qiu Y.-L., Li L., Wang B., Chen Z., Knoop V., Groth-Malonek M., Dombrovska O., Lee J., Kent L., Rest J., et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. USA. 2006;103:15511–15516. doi: 10.1073/pnas.0603335103. PubMed DOI PMC

Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H., Nishiyama T., Perroud P.-F., Lindquist E.A., Kamisugi Y., et al. The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science. 2008;319:64–69. doi: 10.1126/science.1150646. PubMed DOI

Collén J., Porcel B., Carré W., Ball S.G., Chaparro C., Tonon T., Barbeyron T., Michel G., Noel B., Valentin K., et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the archaeplastida. Proc. Natl. Acad. Sci. USA. 2013;110:5247–5252. doi: 10.1073/pnas.1221259110. PubMed DOI PMC

Wang C., Liu Y., Li S.-S., Han G.-Z. Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol. 2015;167:872–886. doi: 10.1104/pp.114.247403. PubMed DOI PMC

Banks J.A., Nishiyama T., Hasebe M., Bowman J.L., Gribskov M., dePamphilis C., Albert V.A., Aono N., Aoyama T., Ambrose B.A., et al. The compact selaginella genome identifies changes in gene content associated with the evolution of vascular plants. Science. 2011;332:960–963. doi: 10.1126/science.1203810. PubMed DOI PMC

Arnaud D., Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant. 2015;8:566–581. doi: 10.1016/j.molp.2014.10.012. PubMed DOI

Bown L., Li Y., Berrué F., Verhoeven J.T.P., Dufour S.C., Bignell D.R.D. Coronafacoyl phytotoxin biosynthesis and evolution in the common scab pathogen Streptomyces scabiei. Appl. Environ. Microbiol. 2017 doi: 10.1128/AEM.01169-17. PubMed DOI PMC

Littleson M.M., Baker C.M., Dalençon A.J., Frye E.C., Jamieson C., Kennedy A.R., Ling K.B., McLachlan M.M., Montgomery M.G., Russell C.J., et al. Scalable total synthesis and comprehensive structure–activity relationship studies of the phytotoxin coronatine. Nat. Commun. 2018;9:1105. doi: 10.1038/s41467-018-03443-1. PubMed DOI PMC

Widemann E., Smirnova E., Aubert Y., Miesch L., Heitz T. Dynamics of jasmonate metabolism upon flowering and across leaf stress responses in Arabidopsis thaliana. Plants. 2016;5:4. doi: 10.3390/plants5010004. PubMed DOI PMC

Koo A.J., Howe G.A. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 2012;3:19. doi: 10.3389/fpls.2012.00019. PubMed DOI PMC

Heitz T., Smirnova E., Widemann E., Aubert Y., Pinot F., Ménard R. The rise and fall of jasmonate biological activities. In: Nakamura Y., Li-Beisson Y., editors. Lipids in Plant and Algae Development. Springer International Publishing; Cham, Switzerland: 2016. pp. 405–426. PubMed

Wasternack C., Strnad M. Jasmonate signaling in plant stress responses and development–active and inactive compounds. New Biotechnol. 2016;33:604–613. doi: 10.1016/j.nbt.2015.11.001. PubMed DOI

Koo A.J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 2018;17:51–80. doi: 10.1007/s11101-017-9510-8. DOI

Fonseca S., Chini A., Hamberg M., Adie B., Porzel A., Kramell R., Miersch O., Wasternack C., Solano R. (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 2009;5:344–350. doi: 10.1038/nchembio.161. PubMed DOI

Staswick P.E., Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis. Plant Cell. 2004;16:2117–2127. doi: 10.1105/tpc.104.023549. PubMed DOI PMC

Westfall C.S., Muehler A.M., Jez J.M. Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 2013;288:19304–19311. doi: 10.1074/jbc.R113.475160. PubMed DOI PMC

Sherp A.M., Westfall C.S., Alvarez S., Jez J.M. Arabidopsis thaliana gh3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J. Biol. Chem. 2018;293:4277–4288. doi: 10.1074/jbc.RA118.002006. PubMed DOI PMC

Monte I., Hamberg M., Chini A., Gimenez-Ibanez S., Garcia-Casado G., Porzel A., Pazos F., Boter M., Solano R. Rational design of a ligand-based antagonism of jasmonate perception. Nat. Chem. Biol. 2014;10:671–676. doi: 10.1038/nchembio.1575. PubMed DOI

Meesters C., Mönig T., Oeljeklaus J., Krahn D., Westfall C., Hause B., Jez J., Kaiser M., Kombrink E. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat. Chem. Biol. 2014;10:830–836. doi: 10.1038/nchembio.1591. PubMed DOI

Westfall C.S., Zubieta C., Herrmann J., Kapp U., Nanao M.H., Jez J.M. Structural basis for prereceptor modulation of plant hormones by gh3 proteins. Science. 2012;336:1708–1711. doi: 10.1126/science.1221863. PubMed DOI

Suza W., Rowe M., Hamberg M., Staswick P. A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves. Planta. 2010;231:717–728. doi: 10.1007/s00425-009-1080-6. PubMed DOI

Fukumoto K., Alamgir K.M., Yamashita Y., Mori I.C., Matsuura H., Galis I. Response of rice to insect elicitors and the role of OSJAR1 in wound and herbivory-induced JA-ILE accumulation. J. Integr. Plant Biol. 2013;55:775–784. doi: 10.1111/jipb.12057. PubMed DOI

Svyatyna K., Jikumaru Y., Brendel R., Reichelt M., MithÖFer A., Takano M., Kamiya Y., Nick P., Riemann M. Light induces jasmonate-isoleucine conjugation via OSJAR1-dependent and -independent pathways in rice. Plant Cell Environ. 2014;37:827–839. doi: 10.1111/pce.12201. PubMed DOI

Xiao Y., Chen Y., Charnikhova T., Mulder P.P.J., Heijmans J., Hoogenboom A., Agalou A., Michel C., Morel J.-B., Dreni L., et al. OSJAR1 is required for ja-regulated floret opening and anther dehiscence in rice. Plant Mol. Biol. 2014;86:19–33. doi: 10.1007/s11103-014-0212-y. PubMed DOI

Yan J., Li S., Gu M., Yao R., Li Y., Chen J., Yang M., Nan F., Xi D. Endogenous bioactive jasmonate is composed of a set of (+)-7-iso-ja-amino acid conjugates. Plant Physiol. 2016 2016;172:2154–2164. doi: 10.1104/pp.16.00906. PubMed DOI PMC

Reveglia P., Chini A., Mandoli A., Masi M., Cimmino A., Pescitelli G., Evidente A. Synthesis and mode of action studies of n-[(−)-jasmonyl]-s-tyrosin and ester seiridin jasmonate. Phytochemistry. 2018;147:132–139. doi: 10.1016/j.phytochem.2017.12.017. PubMed DOI

Hsieh H.-L., Okamoto H., Wang M., Ang L.-H., Matsui M., Goodman H., Deng X.W. FIN219, an auxin-regulated gene, defines a link between phytochrome a and the downstream regulator cop1 in light control of arabidopsis development. Genes Dev. 2000;14:1958–1970. PubMed PMC

Ballaré C.L. Light regulation of plant defense. Annu. Rev. Entomol. 2014;65:335–363. doi: 10.1146/annurev-arplant-050213-040145. PubMed DOI

Robson F., Okamoto H., Patrick E., Harris S.-R., Wasternack C., Brearley C., Turner J.G. Jasmonate and phytochrome a signaling in arabidopsis wound and shade responses are integrated through jaz1 stability. Plant Cell. 2010;22:1143–1160. doi: 10.1105/tpc.109.067728. PubMed DOI PMC

Hsieh H.-L., Okamoto H. Molecular interaction of jasmonate and phytochrome a signalling. J. Exp. Bot. 2014;65:2847–2857. doi: 10.1093/jxb/eru230. PubMed DOI

Swain S., Jiang H.-W., Hsieh H.-L. FAR-RED insensitive 219/jar1 contributes to shade avoidance responses of arabidopsis seedlings by modulating key shade signaling components. Front. Plant Sci. 2017;8:1901. doi: 10.3389/fpls.2017.01901. PubMed DOI PMC

Chen C.-Y., Ho S.-S., Kuo T.-Y., Hsieh H.-L., Cheng Y.-S. Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione s-transferase FIP1 during the ja signal regulation. Proc. Natl. Acad. Sci. USA. 2017;114:E1815–E1824. doi: 10.1073/pnas.1609980114. PubMed DOI PMC

Patkar R.N., Benke P.I., Qu Z., Constance Chen Y.Y., Yang F., Swarup S., Naqvi N.I. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 2015;11:733–740. doi: 10.1038/nchembio.1885. PubMed DOI

Caarls L., Elberse J., Awwanah M., Ludwig N.R., de Vries M., Zeilmaker T., Van Wees S.C.M., Schuurink R.C., Van den Ackerveken G. Arabidopsis jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc. Natl. Acad. Sci. USA. 2017;114:6388–6393. doi: 10.1073/pnas.1701101114. PubMed DOI PMC

Smirnova E., Marquis V., Poirier L., Aubert Y., Zumsteg J., Ménard R., Miesch L., Heitz T. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against botrytis cinerea infection. Mol. Plant. 2017;10:1159–1173. doi: 10.1016/j.molp.2017.07.010. PubMed DOI

Bruckhoff V., Haroth S., Feussner K., König S., Brodhun F., Feussner I. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS ONE. 2016;11:e0159875. doi: 10.1371/journal.pone.0159875. PubMed DOI PMC

Koo A.J., Thireault C., Zemelis S., Poudel A.N., Zhang T., Kitaoka N., Brandizzi F., Matsuura H., Howe G.A. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-l-isoleucine by multiple members of the cytochrome p450 94 family in arabidopsis. J. Biol. Chem. 2014;289:29728–29738. doi: 10.1074/jbc.M114.603084. PubMed DOI PMC

Koo A.J.K., Cooke T.F., Howe G.A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. Proc. Nat. Acad. Sci. USA. 2011;108:9298–9303. doi: 10.1073/pnas.1103542108. PubMed DOI PMC

Heitz T., Widemann E., Lugan R., Miesch L., Ullmann P., Désaubry L., Holder E., Grausem B., Kandel S., Miesch M., et al. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 2012;287:6296–6306. doi: 10.1074/jbc.M111.316364. PubMed DOI PMC

Poudel A.N., Zhang T., Kwasniewski M., Nakabayashi R., Saito K., Koo A.J. Mutations in jasmonoyl-l-isoleucine-12-hydroxylases suppress multiple ja-dependent wound responses in Arabidopsis thaliana. Biochim. Biophys. Acta. 2016;1861:1396–1408. doi: 10.1016/j.bbalip.2016.03.006. PubMed DOI

Zhang T., Poudel A.N., Jewell J.B., Kitaoka N., Staswick P., Matsuura H., Koo A.J. Hormone crosstalk in wound stress response: Wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. J. Exp. Bot. 2016;67:2107–2120. doi: 10.1093/jxb/erv521. PubMed DOI PMC

Sanchez Carranza A.P., Singh A., Steinberger K., Panigrahi K., Palme K., Dovzhenko A., Dal Bosco C. Hydrolases of the ilr1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci. Rep. 2016;6:24212. doi: 10.1038/srep24212. PubMed DOI PMC

Woldemariam M., Ongokesung N., Baldwin I., Galis I. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J. 2012;72:758–767. doi: 10.1111/j.1365-313X.2012.05117.x. PubMed DOI

Luo J., Wei K., Wang S., Zhao W., Ma C., Hettenhausen C., Wu J., Cao G., Sun G., Baldwin I.T., et al. COI1-regulated hydroxylation of jasmonoyl-l-isoleucine impairs nicotiana attenuata’s resistance to the generalist herbivore spodoptera litura. J. Agric. Food Chem. 2016;64:2822–2831. doi: 10.1021/acs.jafc.5b06056. PubMed DOI

Acosta I.F., Laparra H., Romero S.P., Schmelz E., Hamberg M., Mottinger J.P., Moreno M.A., Dellaporta S.L. TASSELSEED1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science. 2009;323:262–265. doi: 10.1126/science.1164645. PubMed DOI

Hayward A.P., Moreno M.A., Howard T.P., Hague J., Nelson K., Heffelfinger C., Romero S., Kausch A.P., Glauser G., Acosta I.F., et al. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci. Adv. 2016;2:e1600991. doi: 10.1126/sciadv.1600991. PubMed DOI PMC

Miersch O., Neumerkel J., Dippe M., Stenzel I., Wasternack C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 2008;177:114–127. doi: 10.1111/j.1469-8137.2007.02252.x. PubMed DOI

Schuman M.C., Baldwin I.T. Field studies reveal functions of chemical mediators in plant interactions. Chem. Soc. Rev. 2018;47:5338–5353. doi: 10.1039/C7CS00749C. PubMed DOI

Schuman M.C., Meldau S., Gaquerel E., Diezel C., McGale E., Greenfield S., Baldwin I.T. The active jasmonate JA-ILE regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front. Plant Sci. 2018;9:787. doi: 10.3389/fpls.2018.00787. PubMed DOI PMC

Bruce T.J.A., Matthes M.C., Chamberlain K., Woodcock C.M., Mohib A., Webster B., Smart L.E., Birkett M.A., Pickett J.A., Napier J.A. Cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc. Natl. Acad. Sci. USA. 2008;105:4553–4558. doi: 10.1073/pnas.0710305105. PubMed DOI PMC

Matthes M., Bruce T., Ton J., Verrier P., Pickett J., Napier J. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta. 2010;232:1163–1180. doi: 10.1007/s00425-010-1244-4. PubMed DOI

Oluwafemi S., Dewhirst S.Y., Veyrat N., Powers S., Bruce T.J.A., Caulfield J.C., Pickett J.A., Birkett M.A. Priming of production in maize of volatile organic defence compounds by the natural plant activator cis-jasmone. PLoS ONE. 2013;8:e62299. doi: 10.1371/journal.pone.0062299. PubMed DOI PMC

Etl F., Berger A., Weber A., Schönenberger J., Dötterl S. Nocturnal plant bugs use cis-jasmone to locate inflorescences of an araceae as feeding and mating site. J. Chem. Ecol. 2016;42:300–304. doi: 10.1007/s10886-016-0688-9. PubMed DOI PMC

Schulze B., Dabrowska P., Boland W. Rapid enzymatic isomerization of 12-oxophytodienoic acid in the gut of lepidopteran larvae. ChemBioChem. 2007;8:208–216. doi: 10.1002/cbic.200600379. PubMed DOI

Cao L., Guo X., Liu G., Song Y., Ho C.-T., Hou R., Zhang L., Wan X. A comparative analysis for the volatile compounds of various chinese dark teas using combinatory metabolomics and fungal solid-state fermentation. J. Food Drug Anal. 2018;26:112–123. doi: 10.1016/j.jfda.2016.11.020. PubMed DOI PMC

Matsui R., Amano N., Takahashi K., Taguchi Y., Saburi W., Mori H., Kondo N., Matsuda K., Matsuura H. Elucidation of the biosynthetic pathway of cis-jasmone in Lasiodiplodia theobromae. Sci. Rep. 2017;7:6688. doi: 10.1038/s41598-017-05851-7. PubMed DOI PMC

Li W., Zhou F., Pichersky E. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides. Plant Physiol. 2018;177:1498–1509. doi: 10.1104/pp.18.00748. PubMed DOI PMC

Stitz M., Gase K., Baldwin I.T., Gaquerel E. Ectopic expression of AtJMT in Nicotiana attenuata: Creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. Plant Physiol. 2011;157:341–354. doi: 10.1104/pp.111.178582. PubMed DOI PMC

Sheard L.B., Tan X., Mao H., Withers J., Ben-Nissan G., Hinds T.R., Kobayashi Y., Hsu F.-F., Sharon M., Browse J., et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature. 2010;468:400–405. doi: 10.1038/nature09430. PubMed DOI PMC

Chaiprasongsuk M., Zhang C., Qian P., Chen X., Li G., Trigiano R.N., Guo H., Chen F. Biochemical characterization in norway spruce (Picea abies) of sabath methyltransferases that methylate phytohormones. Phytochemistry. 2018;149:146–154. doi: 10.1016/j.phytochem.2018.02.010. PubMed DOI

Egea I., Albaladejo I., Meco V., Morales B., Sevilla A., Bolarin M.C., Flores F.B. The drought-tolerant solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Sci. Rep. 2018;8:2791. doi: 10.1038/s41598-018-21187-2. PubMed DOI PMC

Hirschmann F., Krause F., Papenbrock J. The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity and functions. Front. Plant Sci. 2014;5:556. doi: 10.3389/fpls.2014.00556. PubMed DOI PMC

Koprivova A., Kopriva S. Sulfation pathways in plants. Chem. Biol. Interact. 2016;259:23–30. doi: 10.1016/j.cbi.2016.05.021. PubMed DOI

Gidda S., Miersch O., Levitin A., Schmidt J., Wasternack C., Varin L. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 2003;278:17895–17900. doi: 10.1074/jbc.M211943200. PubMed DOI

Mugford S.G., Yoshimoto N., Reichelt M., Wirtz M., Hill L., Mugford S.T., Nakazato Y., Noji M., Takahashi H., Kramell R., et al. Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell. 2009;21:910–927. doi: 10.1105/tpc.109.065581. PubMed DOI PMC

Hannapel D.J. A model system of development regulated by the long-distance transport of mRNA. J. Integr. Plant Biol. 2010;52:40–52. doi: 10.1111/j.1744-7909.2010.00911.x. PubMed DOI

Glauser G., Grata E., Dubugnon L., Rudaz S., Farmer E.E., Wolfender J.-L. Spatial and temporal dynamics of jasmonate synthesis and accumulation in arabidopsis in response to wounding. J. Biol. Chem. 2008;283:16400–16407. doi: 10.1074/jbc.M801760200. PubMed DOI

Nakamura Y., Partz C., Brandt W., David A., Rendon-Anaya M., Herrera-Estrella A., Mithöfer A., Boland W. Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ coreceptor complex of lima bean. J. Chem. Ecol. 2014;40:687–699. doi: 10.1007/s10886-014-0469-2. PubMed DOI

Nakamura Y., Mithofer A., Kombrink E., Boland W., Hamamoto S., Uozumi N., Tohma K., Ueda M. 12-hydroxyjasmonic acid glucoside is a COI1-JAZ-independent activator of leaf-closing movement in Samanea saman. Plant Physiol. 2011;155:1226–1236. doi: 10.1104/pp.110.168617. PubMed DOI PMC

Ueda M., Yang G., Nukadzuka Y., Ishimaru Y., Tamura S., Manabe Y. Functional importance of the sugar moiety of jasmonic acid glucoside for bioactivity and target affinity. Org. Biomol. Chem. 2015;13:55–58. doi: 10.1039/C4OB02106A. PubMed DOI

Jimenez-Aleman G.H., Machado R.A.R., Gorls H., Baldwin I.T., Boland W. Synthesis, structural characterization and biological activity of two diastereomeric JA-ILE macrolactones. Org. Biomol. Chem. 2015;13:5885–5893. doi: 10.1039/C5OB00362H. PubMed DOI

Xie D.-X., Feys B., James S., Nieto-Rostro M., Turner J. COI1: An arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998;280:1091–1094. doi: 10.1126/science.280.5366.1091. PubMed DOI

Katsir L., Schilmiller A.L., Staswick P.E., He S.Y., Howe G.A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA. 2008;105:7100–7105. doi: 10.1073/pnas.0802332105. PubMed DOI PMC

Yan J., Zhang C., Gu M., Bai Z., Zhang W., Qi T., Cheng Z., Peng W., Luo H., Nan F., et al. The arabidopsis coronatine insensitive1 protein is a jasmonate receptor. Plant Cell. 2009;21:2220–2236. doi: 10.1105/tpc.109.065730. PubMed DOI PMC

Mosblech A., Thurow C., Gatz C., Feussner I., Heilmann I. Jasmonic acid perception by coi1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J. 2011;65:949–957. doi: 10.1111/j.1365-313X.2011.04480.x. PubMed DOI

Thines B., Katsir L., Melotto M., Niu Y., Mandaokar A., Liu G., Nomura K., He S.Y., Howe G.A., Browse J. Jaz repressor proteins are targets of the scfcoi1 complex during jasmonate signalling. Nature. 2007;448:661–665. doi: 10.1038/nature05960. PubMed DOI

Melotto M., Mecey C., Niu Y., Chung H.S., Katsir L., Yao J., Zeng W., Thines B., Staswick P., Browse J., et al. A critical role of two positively charged amino acids in the JAS motif of arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 2008;55:979–988. doi: 10.1111/j.1365-313X.2008.03566.x. PubMed DOI PMC

Pauwels L., Goossens A. The JAZ proteins: A crucial interface in the jasmonate signaling cascade. Plant Cell. 2011;23:3089–3100. doi: 10.1105/tpc.111.089300. PubMed DOI PMC

Nagels Durand A., Pauwels L., Goossens A. The ubiquitin system and jasmonate signaling. Plants. 2016;5:6. doi: 10.3390/plants5010006. PubMed DOI PMC

Goossens J., Fernández-Calvo P., Schweizer F., Goossens A. Jasmonates: Signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 2016;91:673–689. doi: 10.1007/s11103-016-0480-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...