Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31971254
PubMed Central
PMC7318144
DOI
10.1111/nph.16446
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, PIN1, TIR1/AFB, auxin, auxin canalization, cell polarity,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- F-box proteiny * genetika MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- F-box proteiny * MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH
- TIR1 protein, Arabidopsis MeSH Prohlížeč
Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
Zobrazit více v PubMed
Adamowski M, Friml J. 2015. PIN‐dependent auxin transport: action, regulation and evolution. The Plant Cell 27: 20–32. PubMed PMC
Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S. 2011. Competitive canalization of PIN‐dependent auxin flow from axillary buds controls pea bud outgrowth. The Plant Journal 65: 571–577. PubMed
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J. 2003. Local, efflux‐dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602. PubMed
Bennett T, Hines G, Leyser O. 2014. Canalization: what the flux? Trends in Genetics 30: 41–48. PubMed
Berleth T, Mattsson J, Hardtke CS. 2000. Vascular continuity and auxin signals. Trends in Plant Science 5: 387–393. PubMed
Berleth T, Sachs T. 2001. Plant morphogenesis: long‐distance coordination and local patterning. Current Opinion in Plant Biology 4: 57–62. PubMed
Bhatia N, Bozorg B, Larsson A, Ohno C, Jönsson H, Heisler MG. 2016. Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. Current Biology 26: 3202–3208. PubMed PMC
Cano‐Delgado A, Lee JY, Demura T. 2010. Regulatory mechanisms for specification and patterning of plant vascular tissues. Annual Review of Cell Developmental Biology 26: 605–637. PubMed
Cieslak M, Runions A, Prusinkiewicz P. 2015. Auxin‐driven patterning with unidirectional fluxes. Journal of Experimental Botany 66: 5083–5102. PubMed PMC
Dettmer J, Elo A, Helariutta Y. 2009. Hormone interactions during vascular development. Plant Molecular Biology 69: 347–360. PubMed
Dharmasiri N, Estelle M. 2004. Auxin signaling and regulated protein degradation. Trends in Plant Science 9: 302–308. PubMed
Donner TJ, Sherr I, Scarpella E. 2009. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136: 3235–3246. PubMed
Fendrych M, Leung J, Friml J. 2016. TIR1/AFB‐Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5: e19048. PubMed PMC
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. 2003. Efflux‐dependent auxin gradients establish the apical–basal axis of Arabidopsis . Nature 426: 147–153. PubMed
Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzynski T, Zazimalova E, Friml J. 2015. Auxin‐binding pocket of ABP1 is crucial for its gain‐of‐function cellular and developmental roles. Journal of Experimental Botany 66: 5055–5065. PubMed
Hayashi KI. 2012. The interaction and integration of auxin signaling components. Plant Cell Physiology 53: 965–975. PubMed
Hayashi KI, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H. 2012. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chemical Biology 7: 590–598. PubMed
Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology 15: 1899–1911. PubMed
Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, Trivedi ZB, Abhayadev PV, Pinon V, Meyerowitz EM, Scheres B et al 2015. PLETHORA genes control regeneration by a two‐step mechanism. Current Biology 25: 1017–1030. PubMed PMC
Knox K, Grierson CS, Leyser O. 2003. AXR3 and SHY2 interact to regulate root hair development. Development 130: 5769–5777. PubMed
Lavy M, Estelle M. 2016. Mechanisms of auxin signaling. Development 143: 3226–3229. PubMed PMC
Lavy M, Prigge MJ, Tao S, Shain S, Kuo A, Kirchsteiger K, Estelle M. 2016. Constitutive auxin response in Physcomistrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 5: e13325. PubMed PMC
Mazur E, Benkova E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports 6: e33754. PubMed PMC
Mazur E, Kurczyńska EU, Friml J. 2014. Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis . Protoplasma 251: 1125–1139. PubMed
Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana . Current Biology 25: 1306–1318. PubMed PMC
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D et al 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 . The Plant Cell 17: 444–463. PubMed PMC
Prat T, Hajny J, Grunewald W, Vasileva M, Molnar G, Tejos R, Schmid M, Sauer M, Friml J. 2018. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics 14: e1007177. PubMed PMC
Rakusova H, Abbas M, Han H, Song S, Robert HS, Friml J. 2016. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Current Biology 26: 3026–3032. PubMed
Raven JA. 1975. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients and its significance for polar IAA transport. New Phytologist 74: 163–172.
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso J, Weijers D, Friml J. 2013. Local auxin sources orient the apical–basal axis in Arabidopsis embryos. Current Biology 23: 2506–2512. PubMed
Sachs T. 1975. The induction of transport channels by auxin. Planta 127: 201–206. PubMed
Sachs T. 1981. The control of the patterned differentiation of vascular tissues. Advances in Botanical Research 9: 151–262.
Sauer M, Balla J, Luschnig C, Wiśniewska J, Reinöhl V, Friml J, Benkova E. 2006. Canalization of auxin flow by Aux/IAA‐ARF‐dependent feedback regulation of PIN polarity. Genes Development 20: 2902–2911. PubMed PMC
Sawchuk MG, Scarpella E. 2013. Polarity, continuity, and alignment in plant vascular strands. Journal of Integrative Plant Biology 55: 824–834. PubMed
Scarpella E, Marcos D, Friml J, Berleth T. 2006. Control of leaf vascular patterning by polar auxin transport. Genes Development 20: 1015–1027. PubMed PMC
Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B. 2000. Cambial‐region‐specific expression of the Agrobacterium iaa genes in transgenic aspen visualized by a linked uidA reporter gene. Plant Physiology 123: 531–542. PubMed PMC
Uggla C, Mellerowicz EJ, Sundberg B. 1998. Indole‐3‐acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiology 117: 113–121. PubMed PMC
Uggla C, Moritz T, Sandberg G, Sundberg B. 1996. Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences, USA 93: 9282–9286. PubMed PMC
Vieten A, Vanneste S, Wiśniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J. 2005. Functional redundancy of PIN1 proteins is accompanied by auxin dependent cross‐regulation of PIN expression. Development 132: 4521–4531. PubMed
Wabnik K, Kleine‐Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks RM, Govaerts W, Friml J. 2010. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Molecular Systems Biology 6: 447. PubMed PMC
Wenzel CI, Schuetz M, Yu Q, Mattsson J. 2007. Dynamics of MONOPTEROS and PIN‐FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana . The Plant Journal 49: 387–398. PubMed
Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J. 2010. PIN phosphorylation is sufficient to mediate polarity and direct auxin transport. Proceedings of the National Academy of Sciences, USA 12: 918–922. PubMed PMC
ABP1-TMK auxin perception for global phosphorylation and auxin canalization
Receptor kinase module targets PIN-dependent auxin transport during canalization
Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization