Influence of Amlodipine Enantiomers on Human Microsomal Cytochromes P450: Stereoselective Time-Dependent Inhibition of CYP3A Enzyme Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29099769
PubMed Central
PMC6150391
DOI
10.3390/molecules22111879
PII: molecules22111879
Knihovny.cz E-zdroje
- Klíčová slova
- amlodipine, cytochrome P450, drug–drug interactions, enantiomers, enzyme inhibition, stereoselectivity,
- MeSH
- amlodipin chemie farmakologie MeSH
- hydroxylace MeSH
- inhibitory cytochromu P450 CYP3A chemie farmakologie MeSH
- inhibitory cytochromu P450 chemie farmakologie MeSH
- jaterní mikrozomy metabolismus MeSH
- kinetika MeSH
- lékové interakce MeSH
- lidé MeSH
- midazolam metabolismus MeSH
- molekulární struktura MeSH
- simulace molekulového dockingu MeSH
- stereoizomerie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- termodynamika MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amlodipin MeSH
- inhibitory cytochromu P450 CYP3A MeSH
- inhibitory cytochromu P450 MeSH
- midazolam MeSH
- systém (enzymů) cytochromů P-450 MeSH
Amlodipine (AML) is available as a racemate, i.e., a mixture of R- and S-enantiomers. Its inhibitory potency towards nine cytochromes P450 (CYP) was studied to evaluate the drug-drug interactions between the enantiomers. Enzyme inhibition was evaluated using specific CYP substrates in human liver microsomes. With CYP3A, both enantiomers exhibited reversible and time-dependent inhibition. S-AML was a stronger reversible inhibitor of midazolam hydroxylation: the Ki values of S- and R-AML were 8.95 µM, 14.85 µM, respectively. Computational docking confirmed that the enantiomers interact differently with CYP3A: the binding free energy of S-AML in the active site was greater than that for R-AML (-7.6- vs. -6.7 kcal/mol). Conversely, R-AML exhibited more potent time-dependent inhibition of CYP3A activity (KI 8.22 µM, Kinact 0.065 min-1) than S-AML (KI 14.06 µM, Kinact 0.041 min-1). R-AML was also a significantly more potent inhibitor of CYP2C9 (Ki 12.11 µM/S-AML 21.45 µM) and CYP2C19 (Ki 5.97 µM/S-AML 7.22 μM. In conclusion, results indicate that clinical use of S-AML has an advantage not only because of greater pharmacological effect, but also because of fewer side effects and drug-drug interactions with cytochrome P450 substrates due to absence of R-AML.
Zobrazit více v PubMed
Zhu Y., Wang F., Li Q., Zhu M., Du A., Tang W., Chen W. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab. Dispos. Biol. Fate Chem. 2014;42:245–249. doi: 10.1124/dmd.113.055400. PubMed DOI
Shirley M., McCormack P.L. Perindopril/amlodipine (Prestalia®): A review in hypertension. Am. J. Cardiovasc. Drugs. 2015;15:363–370. doi: 10.1007/s40256-015-0144-1. PubMed DOI
Jeffers B.W., Robbins J., Bhambri R., Wajsbrot D. A systematic review on the efficacy of amlodipine in the treatment of patients with hypertension with concomitant diabetes mellitus and/or renal dysfunction, when compared with other classes of antihypertensive medication. Am. J. Ther. 2015;22:322–341. doi: 10.1097/MJT.0000000000000202. PubMed DOI
Wang R.X., Jiang W.P., Li X.R., Lai L.H. Effects of (S)-amlodipine and (R)-amlodipine on l-type calcium channel current of rat ventricular myocytes and cytosolic calcium of aortic smooth muscle cells. Die Pharm. 2008;63:470–474. PubMed
Adik-Pathak L. Chiral molecules in hypertension: Focus on S-amlodipine. J. Assoc. Phys. India. 2004;52:187–188. PubMed
Galappatthy P., Waniganayake Y.C., Sabeer M.I., Wijethunga T.J., Galappatthy G.K., Ekanayaka R.A. Leg edema with (S)-amlodipine vs conventional amlodipine given in triple therapy for hypertension: A randomized double blind controlled clinical trial. BMC Cardiovasc. Disord. 2016;16:168. doi: 10.1186/s12872-016-0350-z. PubMed DOI PMC
Beresford A.P., McGibney D., Humphrey M.J., Macrae P.V., Stopher D.A. Metabolism and kinetics of amlodipine in man. Xenobiotica. 1988;18:245–254. doi: 10.3109/00498258809041660. PubMed DOI
Anzenbacher P., Anzenbacherova E. Cytochromes p450 and metabolism of xenobiotics. Cell. Mol. Life sci. 2001;58:737–747. doi: 10.1007/PL00000897. PubMed DOI PMC
Guengerich F.P. Cytochromes p450. In: Anzenbacher P.E., Zanger U.M.E., editors. Metabolism of Drugs and Other Xenobiotics. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2012.
Zanger U.M., Schwab M. Cytochrome p450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharm. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Katoh M., Nakajima M., Shimada N., Yamazaki H., Yokoi T. Inhibition of human cytochrome p450 enzymes by 1,4-dihydropyridine calcium antagonists: Prediction of in vivo drug-drug interactions. Eur. J. Clin. Pharmacol. 2000;55:843–852. doi: 10.1007/s002280050706. PubMed DOI
Ma B., Prueksaritanont T., Lin J.H. Drug interactions with calcium channel blockers: Possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab. Dispos. Biol. Fate Chem. 2000;28:125–130. PubMed
Meyer U.A. Pharmacogenetics-five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet. 2004;5:669–676. doi: 10.1038/nrg1428. PubMed DOI
Guengerich F.P. Introduction: Use of radioactive compounds in drug discovery and development. Chem. Res. Toxicol. 2012;25:511–512. doi: 10.1021/tx3000522. PubMed DOI PMC
Van Booven D., Marsh S., McLeod H., Carrillo M.W., Sangkuhl K., Klein T.E., Altman R.B. Cytochrome p450 2c9-CYP2C9. Pharm. Genom. 2010;20:277–281. doi: 10.1097/FPC.0b013e3283349e84. PubMed DOI PMC
Grimm S.W., Einolf H.J., Hall S.D., He K., Lim H.K., Ling K.H., Lu C., Nomeir A.A., Seibert E., Skordos K.W., et al. The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: A perspective of the pharmaceutical research and manufacturers of america. Drug Metab. Dispos. Biol. Fate Chem. 2009;37:1355–1370. doi: 10.1124/dmd.109.026716. PubMed DOI
Laufen H., Leitold M. Enantioselective disposition of oral amlodipine in healthy volunteers. Chirality. 1994;6:531–536. doi: 10.1002/chir.530060704. PubMed DOI
Luksa J., Josic D., Kremser M., Kopitar Z., Milutinovic S. Pharmacokinetic behaviour of R-(+)- and S-(−)-amlodipine after single enantiomer administration. J. Chromatogr. B Biomed. Sci. Appl. 1997;703:185–193. doi: 10.1016/S0378-4347(97)00394-0. PubMed DOI
Weinstock R.J., Johnson M.P. Review of top 10 prescribed drugs and their interaction with dental treatment. Dent. Clin. N. Am. 2016;60:421–434. doi: 10.1016/j.cden.2015.11.005. PubMed DOI
Nishio S., Watanabe H., Kosuge K., Uchida S., Hayashi H., Ohashi K. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens. Res. 2005;28:223–227. doi: 10.1291/hypres.28.223. PubMed DOI
Harmsze A.M., Robijns K., van Werkum J.W., Breet N.J., Hackeng C.M., Ten Berg J.M., Ruven H.J., Klungel O.H., de Boer A., Deneer V.H. The use of amlodipine, but not of p-glycoprotein inhibiting calcium channel blockers is associated with clopidogrel poor-response. Thromb. Haemost. 2010;103:920–925. doi: 10.1160/TH09-08-0516. PubMed DOI
Siller-Matula J.M., Lang I., Christ G., Jilma B. Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J. Am. Coll. Cardiol. 2008;52:1557–1563. doi: 10.1016/j.jacc.2008.07.055. PubMed DOI
Zhao W., Baudouin V., Fakhoury M., Storme T., Deschenes G., Jacqz-Aigrain E. Pharmacokinetic interaction between tacrolimus and amlodipine in a renal transplant child. Transplantation. 2012;93:e29–e30. doi: 10.1097/TP.0b013e318249b180. PubMed DOI
Williams J.A., Ring B.J., Cantrell V.E., Jones D.R., Eckstein J., Ruterbories K., Hamman M.A., Hall S.D., Wrighton S.A. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. Biol. Fate Chem. 2002;30:883–891. doi: 10.1124/dmd.30.8.883. PubMed DOI
Li X.Q., Andersson T.B., Ahlstrom M., Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome p450 activities. Drug Metab. Dispos. Biol. Fate Chem. 2004;32:821–827. doi: 10.1124/dmd.32.8.821. PubMed DOI
Novotna A., Krasulova K., Bartonkova I., Korhonova M., Bachleda P., Anzenbacher P., Dvorak Z. Dual effects of ketoconazole cis-enantiomers on CYP3A4 in human hepatocytes and HepG2 cells. PLoS ONE. 2014;9:e111286. doi: 10.1371/journal.pone.0111286. PubMed DOI PMC
Krasulova K., Siller M., Holas O., Dvorak Z., Anzenbacher P. Enantiospecific effects of chiral drugs on cytochrome p450 inhibition in vitro. Xenobiotica. 2016;46:315–324. doi: 10.3109/00498254.2015.1076086. PubMed DOI
Stepankova M., Krasulova K., Doricakova A., Kurka O., Anzenbacher P., Dvorak Z. Optical isomers of dihydropyridine calcium channel blockers display enantiospecific effects on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes p450. Toxicol. Lett. 2016;262:173–186. doi: 10.1016/j.toxlet.2016.10.005. PubMed DOI
Fowler S., Zhang H. In vitro evaluation of reversible and irreversible cytochrome p450 inhibition: Current status on methodologies and their utility for predicting drug-drug interactions. AAPS J. 2008;10:410–424. doi: 10.1208/s12248-008-9042-7. PubMed DOI PMC
Riley R.J., Grime K., Weaver R. Time-dependent CYP inhibition. Expert Opin. Drug Metab. Toxicol. 2007;3:51–66. doi: 10.1517/17425255.3.1.51. PubMed DOI
Jones D.R., Ekins S., Li L., Hall S.D. Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5) Drug Metab. Dispos. Biol. Fate Chem. 2007;35:1466–1475. doi: 10.1124/dmd.106.014613. PubMed DOI
Ekroos M., Sjogren T. Structural basis for ligand promiscuity in cytochrome p450 3a4. Proc. Natl. Acad. Sci. USA. 2006;103:13682–13687. doi: 10.1073/pnas.0603236103. PubMed DOI PMC
Galetin A., Ito K., Hallifax D., Houston J.B. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J. Pharmacol. Exp. Ther. 2005;314:180–190. doi: 10.1124/jpet.104.082826. PubMed DOI
Anzenbacherova E., Bec N., Anzenbacher P., Hudecek J., Soucek P., Jung C., Munro A.W., Lange R. Flexibility and stability of the structure of cytochromes p450 3A4 and BM-3. Eur. J. Biochem. 2000;267:2916–2920. doi: 10.1046/j.1432-1327.2000.01305.x. PubMed DOI
Ingelman-Sundberg M., Oscarson M., McLellan R.A. Polymorphic human cytochrome p450 enzymes: An opportunity for individualized drug treatment. Trends Pharmacol. Sci. 1999;20:342–349. doi: 10.1016/S0165-6147(99)01363-2. PubMed DOI
Kim K.A., Park P.W., Park J.Y. Effect of cytochrome p450 3A5*3 genotype on the stereoselective pharmacokinetics of amlodipine in healthy subjects. Chirality. 2009;21:485–491. doi: 10.1002/chir.20588. PubMed DOI
Kelly J.G., O’Malley K. Clinical pharmacokinetics of calcium antagonists. An update. Clin. Pharmacokinet. 1992;22:416–433. doi: 10.2165/00003088-199222060-00002. PubMed DOI
Phillips I.R., Shephard E.A. Cytochrome p450 Protocols. 2nd ed. Humana Press; Totowa, NJ, USA: 2006.
Chauret N., Gauthier A., Nicoll-Griffith D.A. Effect of common organic solvents on in vitro cytochrome p450-mediated metabolic activities in human liver microsomes. Drug Metab. Dispos. Biol. Fate Chem. 1998;26:1–4. PubMed
Copeland R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. John Wiley & Sons; New York, NY, USA: 2004.
Perloff E.S., Mason A.K., Dehal S.S., Blanchard A.P., Morgan L., Ho T., Dandeneau A., Crocker R.M., Chandler C.M., Boily N., et al. Validation of cytochrome p450 time-dependent inhibition assays: A two-time point IC50 shift approach facilitates kinact assay design. Xenobiotica. 2009;39:99–112. doi: 10.1080/00498250802638155. PubMed DOI
Berry L.M., Zhao Z. An examination of IC50 and IC50-shift experiments in assessing time-dependent inhibition of CYP3A4, cyp2d6 and cyp2c9 in human liver microsomes. Drug Metab. Lett. 2008;2:51–59. doi: 10.2174/187231208783478407. PubMed DOI
Ogilvie B.W., Zhang D., Li W., Rodrigues A.D., Gipson A.E., Holsapple J., Toren P., Parkinson A. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: Implications for drug-drug interactions. Drug Metab. Dispos. Biol. Fate Chem. 2006;34:191–197. doi: 10.1124/dmd.105.007633. PubMed DOI
Shahrokh K., Orendt A., Yost G.S., Cheatham T.E., 3rd Quantum mechanically derived amber-compatible heme parameters for various states of the cytochrome p450 catalytic cycle. J. Comput. Chem. 2012;33:119–133. doi: 10.1002/jcc.21922. PubMed DOI PMC