Photon-phonon-photon transfer in optomechanics

. 2017 Apr 24 ; 7 () : 46764. [epub] 20170424

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28436461

We consider transfer of a highly nonclassical quantum state through an optomechanical system. That is we investigate a protocol consisting of sequential upload, storage and reading out of the quantum state from a mechanical mode of an optomechanical system. We show that provided the input state is in a test-bed single-photon Fock state, the Wigner function of the recovered state can have negative values at the origin, which is a manifest of nonclassicality of the quantum state of the macroscopic mechanical mode and the overall transfer protocol itself. Moreover, we prove that the recovered state is quantum non-Gaussian for wide range of setup parameters. We verify that current electromechanical and optomechanical experiments can test this complete transfer of single photon.

Zobrazit více v PubMed

Aspelmeyer M., Kippenberg T. J. & Marquardt F. Cavity optomechanics. Reviews of Modern Physics 86, 1391–1452, doi: 10.1103/RevModPhys.86.1391 (2014). DOI

Khalili F. Y. & Danilishin S. L. Quantum Optomechanics. In Visser T. D. (ed.) Progress in Optics, vol. 61, 113–236 (Elsevier, 2016).

Thompson J. D. et al.. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75, doi: 10.1038/nature06715 (2008). PubMed DOI

Gröblacher S., Hammerer K., Vanner M. R. & Aspelmeyer M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727, doi: 10.1038/nature08171 (2009). PubMed DOI

Verhagen E., Deléglise S., Weis S., Schliesser A. & Kippenberg T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67, doi: 10.1038/nature10787 (2012). PubMed DOI

Cohen J. D. et al.. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525, doi: 10.1038/nature14349. ArXiv: 1410.1047 (2015). PubMed DOI

Vinjanampathy S. & Anders J. Quantum Thermodynamics. Contemporary Physics 57, 545–579 ArXiv: 1508.06099 (2016).

Schnabel R. Squeezed states of light and their applications in laser interferometers. arXiv:1611.03986 [quant-ph] ArXiv: 1611.03986 ( 2016. ).

Palomaki T. A., Teufel J. D., Simmonds R. W. & Lehnert K. W. Entangling Mechanical Motion with Microwave Fields. Science 342, 710–713, doi: 10.1126/science.1244563 (2013) PubMed DOI

Pirkkalainen J.-M., Damskägg E., Brandt M., Massel F. & Sillanpää M. A. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters 115, 243601, doi: 10.1103/PhysRevLett.115.243601. ArXiv: 1507.04209 (2015). PubMed DOI

Mari A. & Eisert J. Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient. Physical Review Letters 109, 230503, doi: 10.1103/PhysRevLett.109.230503. ArXiv: 1208.3660 (2012). PubMed DOI

Riedinger R. et al.. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316, doi: 10.1038/nature16536. ArXiv: 1512.05360 (2016). PubMed DOI

Safavi-Naeini A. H. & Painter O. Proposal for an optomechanical traveling wave phonon–photon translator. New Journal of Physics 13, 013017 ArXiv: 1009.3529 (2011).

Wang Y.-D. & Clerk A. A. Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Physical Review Letters 108, 153603, doi: 10.1103/PhysRevLett.108.153603. ArXiv: 1110.5074 (2012). PubMed DOI

Tian L. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physical Review Letters 108, 153604, doi: 10.1103/PhysRevLett.108.153604 (2012). PubMed DOI

Tian L. Optoelectromechanical transducer: reversible conversion between microwave and optical photons. Annalen der Physik 527, 1–14, doi: 10.1002/andp.201400116. ArXiv: 1407.3035 (2015). DOI

Zhang H., Song X.-K., Ai Q., Zhang M. & Deng F.-G. Transitionless intra-cavity quantum state transfer in optomechanical systems. arXiv:1610.09938 [quant-ph] ArXiv: 1610.09938 (2016).

Hill J. T., Safavi-Naeini A. H., Chan J. & Painter O. Coherent optical wavelength conversion via cavity optomechanics. Nature Communications 3, 1196, doi: 10.1038/ncomms2201. ArXiv: 1206.0704 (2012). PubMed DOI

Andrews R. W. et al.. Bidirectional and efficient conversion between microwave and optical light. Nature Physics 10, 321–326, doi: 10.1038/nphys2911. ArXiv: 1310.5276 (2014). DOI

Andrews R. W., Reed A. P., Cicak K., Teufel J. D. & Lehnert K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nature Communications 6, 10021, doi: 10.1038/ncomms10021. ArXiv: 1506.02296 (2015). PubMed DOI PMC

Lecocq F., Clark J., Simmonds R., Aumentado J. & Teufel J. Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime. Physical Review Letters 116, 043601, doi: 10.1103/PhysRevLett.116.043601. ArXiv: 1512.00078 (2016). PubMed DOI

Khalili F. et al.. Preparing a Mechanical Oscillator in Non-Gaussian Quantum States. Physical Review Letters 105, 070403, doi: 10.1103/PhysRevLett.105.070403 (2010). PubMed DOI

McGee S. A., Meiser D., Regal C. A., Lehnert K. W. & Holland M. J. Mechanical resonators for storage and transfer of electrical and optical quantum states. Physical Review A 87, 053818, doi: 10.1103/PhysRevA.87.053818. ArXiv: 1305.6962 (2013). DOI

Rakhubovsky A. A., Vostrosablin N. & Filip R. Squeezer-based pulsed optomechanical interface. Physical Review A 93, 033813, doi: 10.1103/PhysRevA.93.033813. ArXiv: 1511.08611 (2016). DOI

Bennett J. S. et al.. A quantum optomechanical interface beyond the resolved sideband limit. New Journal of Physics 18, 053030 ArXiv: 1510.05368 (2016).

Hoff U. B., Kollath-Bönig J., Neergaard-Nielsen J. S. & Andersen U. L. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics. Physical Review Letters 117, 143601, doi: 10.1103/PhysRevLett.117.143601. ArXiv: 1601.01663 (2016). PubMed DOI

Filip R. & Rakhubovsky A. A. Transfer of non-Gaussian quantum states of mechanical oscillator to light. Physical Review A 92, 053804, doi: 10.1103/PhysRevA.92.053804 (2015). DOI

Rogers B., Gullo N. L., De Chiara G., Palma G. M. & Paternostro M. Hybrid optomechanics for Quantum Technologies. Quantum Measurements and Quantum Metrology 2, 11–43, doi: 10.2478/qmetro-2014-0002. ArXiv: 1402.1195 (2014). DOI

Teklu B., Ferraro A., Paternostro M. & Paris M. G. A. Nonlinearity and nonclassicality in a nanomechanical resonator. EPJ Quantum Technology 2, 16, doi: 10.1140/epjqt/s40507-015-0029-x. ArXiv: 1501.03767 (2015). DOI

Ockeloen-Korppi C. F. et al.. Low-noise amplification and frequency conversion with a multiport microwave optomechanical device. arXiv:1602.05779 [cond-mat, physics:quant-ph]. ArXiv: 1602.05779 (2016).

Xia K., Vanner M. R. & Twamley J. An opto-magneto-mechanical quantum interface between distant superconducting qubits. Scientific Reports 4, 5571, doi: 10.1038/srep05571 (2014). PubMed DOI PMC

Hofer S. G., Wieczorek W., Aspelmeyer M. & Hammerer K. Quantum entanglement and teleportation in pulsed cavity optomechanics. Physical Review A 84, 052327, doi: 10.1103/PhysRevA.84.052327 (2011). DOI

Filip R. & Mišta L. Detecting Quantum States with a Positive Wigner Function beyond Mixtures of Gaussian States. Physical Review Letters 106, 200401, doi: 10.1103/PhysRevLett.106.200401 (2011). PubMed DOI

Ježek M. et al.. Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state. Physical Review A 86, 043813, doi: 10.1103/PhysRevA.86.043813. ArXiv: 1206.7057 (2012). DOI

Straka I. et al.. Quantum non-Gaussian Depth of Single-Photon States. Physical Review Letters 113, 223603, doi: 10.1103/PhysRevLett.113.223603. ArXiv: 1403.4194 (2014). PubMed DOI

Vostrosablin N., Rakhubovsky A. A. & Filip R. Pulsed quantum interaction between two distant mechanical oscillators. Physical Review A 94, 063801, doi: 10.1103/PhysRevA.94.063801. ArXiv: 1605.05932 (2016). DOI

Serafini A., Paris M. G. A., Illuminati F. & Siena S. D. Quantifying decoherence in continuous variable systems. Journal of Optics B: Quantum and Semiclassical Optics 7, R19–R36, doi: 10.1088/1464-4266/7/4/R01. Arxiv:quant-ph/0501173 (2005). DOI

Chan J. et al.. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92, doi: 10.1038/nature10461. ArXiv:1106.3614 [quant-ph] (2011). PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...