• This record comes from PubMed

Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory

. 2025 Sep 23 ; 21 (18) : 8812-8822. [epub] 20250830

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

The description of strongly correlated systems interacting with quantized cavity modes poses significant theoretical challenges due to the combinatorial scaling of the electronic and photonic degrees of freedom. Recent advances addressing this complexity include cavity quantum electrodynamics (QED) generalizations of complete active space configuration interaction and density matrix renormalization group methods. In this work, we introduce a QED extension of state-averaged complete active space self-consistent field theory, which incorporates cavity-induced correlations through a second-order orbital optimization framework with robust convergence properties. The method is implemented using both photon number state and coherent state representations, with the latter showing robust origin invariance in the energies, regardless of the completeness of the photonic Fock space. The implementation enables symmetry-free orbital relaxations to account for photon-mediated symmetry breaking in polaritonic systems. Numerical validation on lithium hydride, hydroxide anion, and magnesium hydride cation demonstrates that this method achieves significantly improved accuracy in modeling ground-state and polariton potential energy surfaces compared with QED-CASCI in a fixed orbital basis. In these studies, we reach sub kcal/mol accuracy in potential energy surface in much smaller active spaces than are required for QED-CASCI. This advancement provides a more robust approach for studying cavity-altered chemical landscapes for ground and excited strongly coupled systems.

See more in PubMed

Xiong W.. Molecular Vibrational Polariton Dynamics: What Can Polaritons Do? Acc. Chem. Res. 2023;56:776–786. doi: 10.1021/acs.accounts.2c00796. PubMed DOI PMC

Martínez-Martínez L. A., Ribeiro R. F., Campos-González-Angulo J., Yuen-Zhou J.. Can Ultrastrong Coupling Change Ground-State Chemical Reactions? ACS Photonics. 2018;5:167–176. doi: 10.1021/acsphotonics.7b00610. DOI

Hertzog M., Wang M., Mony J., Börjesson K.. Strong light-matter interactions: a new direction within chemistry. Chem. Soc. Rev. 2019;48:937. doi: 10.1039/C8CS00193F. PubMed DOI PMC

Davidsson E., Kowalewski M.. Simulating photodissociation reactions in bad cavities with the Lindblad equation. J. Chem. Phys. 2020;153:234304. doi: 10.1063/5.0033773. PubMed DOI PMC

Mandal A., Huo P.. Investigating New Reactivities Enabled by Polariton Photochemistry. J. Phys. Chem. Lett. 2019;10:5519–5529. doi: 10.1021/acs.jpclett.9b01599. PubMed DOI

Rana B., Hohenstein E. G., Martínez T. J.. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J. Phys. Chem. A. 2024;128:139–151. doi: 10.1021/acs.jpca.3c06607. PubMed DOI

Pavošević F., Smith R. L., Rubio A.. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat. Commun. 2023;14:2766. doi: 10.1038/s41467-023-38474-w. PubMed DOI PMC

Weight B. M., Weix D. J., Tonzetich Z. J., Krauss T. D., Huo P.. Cavity Quantum Electrodynamics Enables para- and ortho-Selective Electrophilic Bromination of Nitrobenzene. J. Am. Chem. Soc. 2024;146:16184–16193. doi: 10.1021/jacs.4c04045. PubMed DOI PMC

Spano F. C.. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. J. Chem. Phys. 2015;142:184707. doi: 10.1063/1.4919348. PubMed DOI

Herrera F., Spano F. C.. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 2016;116:238301. doi: 10.1103/PhysRevLett.116.238301. PubMed DOI

Khazanov T., Gunasekaran S., George A., Lomlu R., Mukherjee S., Musser A. J.. Embrace the darkness: An experimental perspective on organic exciton–polaritons. Chem. Phys. Rev. 2023;4:041305. doi: 10.1063/5.0168948. DOI

Martínez-Martínez L. A., Du M., Ribeiro R. F., Kéna-Cohen S., Yuen-Zhou J.. Polariton-Assisted Singlet Fission in Acene Aggregates. J. Phys. Chem. Lett. 2018;9:1951–1957. doi: 10.1021/acs.jpclett.8b00008. PubMed DOI

Du M., Martínez-Martínez L. A., Ribeiro R. F., Hu Z., Menon V. M., Yuen-Zhou J.. Theory for polariton-assisted remote energy transfer. Chem. Sci. 2018;9:6659–6669. doi: 10.1039/C8SC00171E. PubMed DOI PMC

Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. et al. Ultrafast imaging of polariton propagation and interactions. Nat. Commun. 2023;14:3881. doi: 10.1038/s41467-023-39550-x. PubMed DOI PMC

Lindoy L. P., Mandal A., Reichman D. R.. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. Nanophotonics. 2024;13:2617–2633. doi: 10.1515/nanoph-2024-0026. PubMed DOI PMC

Koessler E. R., Mandal A., Musser A. J., Krauss T. D., Huo P.. Polariton mediated electron transfer under the collective molecule–cavity coupling regime. Chem. Sci. 2025;16:11644. doi: 10.1039/D5SC01911G. PubMed DOI PMC

Raimond J. M., Brune M., Haroche S.. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 2001;73:565–582. doi: 10.1103/RevModPhys.73.565. DOI

Zhong X., Chervy T., Zhang L., Thomas A., George J., Genet C., Hutchison J. A., Ebbesen T. W.. Energy Transfer between Spatially Separated Entangled Molecules. Angew. Chem., Int. Ed. 2017;56:9034–9038. doi: 10.1002/anie.201703539. PubMed DOI PMC

Ribeiro R. F., Martínez-Martínez L. A., Du M., Campos-Gonzalez-Angulo J., Yuen-Zhou J.. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 2018;9:6325–6339. doi: 10.1039/C8SC01043A. PubMed DOI PMC

Mandal A., Taylor M., Weight B., Koessler E., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC

Fregoni J., Garcia-Vidal F. J., Feist J.. Theoretical challenges in polaritonic chemistry. ACS Photonics. 2022;9:1096–1107. doi: 10.1021/acsphotonics.1c01749. PubMed DOI PMC

Ruggenthaler M., Sidler D., Rubio A.. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC

Cheng C.-Y., Krainova N., Brigeman A. N., Khanna A., Shedge S., Isborn C., Yuen-Zhou J., Giebink N. C.. Molecular polariton electroabsorption. Nat. Commun. 2022;13:7937. doi: 10.1038/s41467-022-35589-4. PubMed DOI PMC

Foley J. J. IV, McTague J., DePrince A. E. III. Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023;4:041301. doi: 10.1063/5.0167243. DOI

Liu Z., Wang X.. Modulating molecular plasmons in naphthalene via intermolecular interactions and strong light–matter coupling. Phys. Chem. Chem. Phys. 2024;26:23646–23653. doi: 10.1039/D4CP01816H. PubMed DOI

Chikkaraddy R., de Nijs B., Benz F., Barrow S. J., Scherman O. A., Rosta E., Demetriadou A., Fox P., Hess O., Baumberg J. J.. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–130. doi: 10.1038/nature17974. PubMed DOI PMC

Baumberg J. J.. Picocavities: a Primer. Nano Lett. 2022;22:5859–5865. doi: 10.1021/acs.nanolett.2c01695. PubMed DOI PMC

Paoletta A. L., Hoffmann N. M., Cheng D. W., York E., Xu D., Zhang B., Delor M., Berkelbach T. C., Venkataraman L.. Plasmon-Exciton Strong Coupling in Single-Molecule Junction Electroluminescence. J. Am. Chem. Soc. 2024;146:34394–34400. doi: 10.1021/jacs.4c09782. PubMed DOI

Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI

DePrince A. E.. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021;154:094112. doi: 10.1063/5.0038748. PubMed DOI

Haugland T. S., Schäfer C., Ronca E., Rubio A., Koch H.. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI

Li T. E., Nitzan A., Subotnik J. E.. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. J. Chem. Phys. 2021;154:094124. doi: 10.1063/5.0037623. PubMed DOI

Li T. E., Subotnik J. E., Nitzan A.. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. U.S.A. 2020;117:18324–18331. doi: 10.1073/pnas.2009272117. PubMed DOI PMC

Pérez-Sánchez J. B., Koner A., Stern N. P., Yuen-Zhou J.. Simulating molecular polaritons in the collective regime using few-molecule models. Proc. Natl. Acad. Sci. U. S. A. 2023;120:e2219223120. doi: 10.1073/pnas.2219223120. PubMed DOI PMC

Sharma S. K., Chen H.-T.. Unraveling abnormal collective effects via the non-monotonic number dependence of electron transfer in confined electromagnetic fields. J. Chem. Phys. 2024;161:104102. doi: 10.1063/5.0225434. PubMed DOI

Sun K., Ribeiro R.. Theoretical formulation of chemical equilibrium under vibrational strong coupling. Nat. Commun. 2024;15:2405. doi: 10.1038/s41467-024-46442-1. PubMed DOI PMC

Bradbury N. C., Ribeiro R. F., Caram J. R., Neuhauser D.. Stochastic methodology shows molecular interactions protect two-dimensional polaritons. Phys. Rev. B. 2024;109:L241303. doi: 10.1103/PhysRevB.109.L241303. DOI

Pérez-Sánchez J. B., Koner A., Raghavan-Chitra S., Yuen-Zhou J.. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J. Chem. Phys. 2025;162:064101. doi: 10.1063/5.0244452. PubMed DOI

Schwennicke K., Koner A., Pérez-Sánchez J. B., Xiong W., Giebink N. C., Weichman M. L., Yuen-Zhou J.. When do molecular polaritons behave like optical filters? Chem. Soc. Rev. 2025;54:6482–6504. doi: 10.1039/D4CS01024H. PubMed DOI

Sidler D., Schnappinger T., Obzhirov A., Ruggenthaler M., Kowalewski M., Rubio A.. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. J. Phys. Chem. Lett. 2024;15:5208–5214. doi: 10.1021/acs.jpclett.4c00913. PubMed DOI PMC

Sidler, D. ; Ruggenthaler, M. ; Rubio, A. . The connection of polaritonic chemistry with the physics of a spin glass. arXiv Preprints 2024, arXiv:2409.08986v1, https://arxiv.org/html/2409.08986v1

Patrahau B., Piejko M., Mayer R. J., Antheaume C., Sangchai T., Ragazzon G., Jayachandran A., Devaux E., Genet C., Moran J., Ebbesen T. W.. Direct Observation of Polaritonic Chemistry by Nuclear Magnetic Resonance Spectroscopy. Angew. Chem., Int. Ed. 2024;63:e202401368. doi: 10.1002/anie.202401368. PubMed DOI

El Moutaoukal Y., Riso R. R., Castagnola M., Koch H.. Toward Polaritonic Molecular Orbitals for Large Molecular Systems. J. Chem. Theory Comput. 2024;20:8911–8920. doi: 10.1021/acs.jctc.4c00808. PubMed DOI PMC

Riso R. R., Haugland T. S., Ronca E., Koch H.. Molecular orbital theory in cavity QED environments. Nat. Commun. 2022;13:1368. doi: 10.1038/s41467-022-29003-2. PubMed DOI PMC

Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI

Ruggenthaler M., Mackenroth F., Bauer D.. Time-dependent Kohn-Sham approach to quantum electrodynamics. Phys. Rev. A. 2011;84:042107. doi: 10.1103/PhysRevA.84.042107. DOI

Ruggenthaler M., Flick J., Pellegrini C., Appel H., Tokatly I. V., Rubio A.. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A. 2014;90:012508. doi: 10.1103/PhysRevA.90.012508. DOI

Pellegrini C., Flick J., Tokatly I. V., Appel H., Rubio A.. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015;115:093001. doi: 10.1103/PhysRevLett.115.093001. PubMed DOI

Flick J., Schäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics. 2018;5:992–1005. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC

Jestädt R., Ruggenthaler M., Oliveira M. J. T., Rubio A., Appel H.. Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019;68:225–333. doi: 10.1080/00018732.2019.1695875. DOI

Flick J., Narang P.. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J. Chem. Phys. 2020;153:094116. doi: 10.1063/5.0021033. PubMed DOI

Vu N., McLeod G. M., Hanson K., DePrince A. E. III.. Enhanced Diastereocontrol via Strong Light–Matter Interactions in an Optical Cavity. J. Phys. Chem. A. 2022;126:9303–9312. doi: 10.1021/acs.jpca.2c07134. PubMed DOI

Pavošević F., Rubio A.. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022;157:094101. doi: 10.1063/5.0095552. PubMed DOI

Liebenthal M. D., Vu N., DePrince A. E. III. Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A. 2023;127:5264–5275. doi: 10.1021/acs.jpca.3c01842. PubMed DOI

Liebenthal M. D., DePrince A. E. III. The orientation dependence of cavity-modified chemistry. J. Chem. Phys. 2024;161:064109. doi: 10.1063/5.0216993. PubMed DOI

Tokatly I. V.. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013;110:233001. doi: 10.1103/PhysRevLett.110.233001. PubMed DOI

Flick J., Ruggenthaler M., Appel H., Rubio A.. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017;114:3026–3034. doi: 10.1073/pnas.1615509114. PubMed DOI PMC

Tokatly I. V.. Conserving approximations in cavity quantum electrodynamics: Implications for density functional theory of electron-photon systems. Phys. Rev. B. 2018;98:235123. doi: 10.1103/PhysRevB.98.235123. DOI

Malave J., Ahrens A., Pitagora D., Covington C., Varga K.. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022;157:194106. doi: 10.1063/5.0123909. PubMed DOI

Yang J., Ou Q., Pei Z., Wang H., Weng B., Shuai Z., Mullen K., Shao Y.. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021;155:064107. doi: 10.1063/5.0057542. PubMed DOI PMC

Yang J., Pei Z., Leon E. C., Wickizer C., Weng B., Mao Y., Ou Q., Shao Y.. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022;156:124104. doi: 10.1063/5.0082386. PubMed DOI

McTague J., Foley J. J. IV. Non-Hermitian cavity quantum electrodynamics–configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022;156:154103. doi: 10.1063/5.0091953. PubMed DOI

Weidman J. D., Dadgar M. S., Stewart Z. J., Peyton B. G., Ulusoy I. S., Wilson A. K.. Cavity-Modified Molecular Dipole Switching Dynamics. J. Chem. Phys. 2024;160:094111. doi: 10.1063/5.0188471. PubMed DOI

Peyton B. G., Weidman J. D., Wilson A. K.. Light-Induced Electron Dynamics of Molecules in Cavities: Comparison of Model Hamiltonians. JOSA B. 2024;41:C74–C81. doi: 10.1364/JOSAB.523931. DOI

Bauer M., Dreuw A.. Perturbation theoretical approaches to strong light–matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023;158:124128. doi: 10.1063/5.0142403. PubMed DOI

Cui Z.-H., Mandal A., Reichman D. R.. Variational Lang–Firsov Approach Plus Mo̷ller–Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024;20:1143–1156. doi: 10.1021/acs.jctc.3c01166. PubMed DOI

El Moutaoukal Y., Riso R. R., Castagnola M., Ronca E., Koch H.. Strong Coupling Mo̷ller–Plesset Perturbation Theory. J. Chem. Theory Comput. 2025;21:3981–3992. doi: 10.1021/acs.jctc.5c00055. PubMed DOI PMC

Mordovina U., Bungey C., Appel H., Knowles P. J., Rubio A., Manby F. R.. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020;2:023262. doi: 10.1103/PhysRevResearch.2.023262. DOI

Vidal M. L., Manby F. R., Knowles P. J.. Polaritonic effects in the vibronic spectrum of molecules in an optical cavity. J. Chem. Phys. 2022;156:204119. doi: 10.1063/5.0089412. PubMed DOI

Monzel L., Stopkowicz S.. Diagrams in Polaritonic Coupled Cluster Theory. J. Phys. Chem. A. 2024;128:9572–9586. doi: 10.1021/acs.jpca.4c04389. PubMed DOI

Lexander M. T., Angelico S., Kjønstad E. F., Koch H.. Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory. J. Chem. Theory Comput. 2024;20:8876–8885. doi: 10.1021/acs.jctc.4c00763. PubMed DOI PMC

Castagnola M., Lexander M. T., Ronca E., Koch H.. Strong coupling electron-photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Phys. Rev. Res. 2024;6:033283. doi: 10.1103/PhysRevResearch.6.033283. DOI

Castagnola M., Riso R. R., Barlini A., Ronca E., Koch H.. Polaritonic response theory for exact and approximate wave functions. WIREs Comput. Mol. Sci. 2024;14:e1684. doi: 10.1002/wcms.1684. DOI

Mallory J. D., DePrince A. E.. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A. 2022;106:053710. doi: 10.1103/PhysRevA.106.053710. DOI

Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI

Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. I.. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC

Matoušek M., Vu N., Govind N., Foley J. J. I., Veis L.. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J. Chem. Theory Comput. 2024;20:9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC

Hu D., Ying W., Huo P.. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations. J. Phys. Chem. Lett. 2023;14:11208–11216. doi: 10.1021/acs.jpclett.3c02985. PubMed DOI PMC

Manderna R., Vu N., Foley J. J.. Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling. J. Chem. Phys. 2024;161:174105. doi: 10.1063/5.0230565. PubMed DOI

Alessandro R., Castagnola M., Koch H., Ronca E.. A Complete Active Space Self-Consistent Field Approach for Molecules in QED Environments. J. Chem. Theory Comput. 2025;21:6862–6873. doi: 10.1021/acs.jctc.5c00519. PubMed DOI PMC

Werner H., Meyer W.. A quadratically convergent multiconfiguration–self-consistent field method with simultaneous optimization of orbitals and CI coefficients. J. Chem. Phys. 1980;73:2342–2356. doi: 10.1063/1.440384. DOI

Werner H., Knowles P. J.. A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 1985;82:5053–5063. doi: 10.1063/1.448627. DOI

Kreplin D. A., Knowles P. J., Werner H.-J.. Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. J. Chem. Phys. 2019;150:194106. doi: 10.1063/1.5094644. PubMed DOI

Kreplin, D. Multiconfiguration self-consistent field methods for large molecules. Ph.D. thesis, Institut für Theoretische Chemie der Universität Stuttgart, Stuttgart, Germany, 2020.

Rojas M., Santos S. A., Sorensen D. C.. A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem. SIAM J. Optim. 2001;11:611–646. doi: 10.1137/S105262349928887X. DOI

Sun Q., Berkelbach T. C., Blunt N. S., Booth G. H., Guo S., Li Z., Liu J., McClain J. D., Sayfutyarova E. R., Sharma S., Wouters S., Chan G. K.-L.. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 2018;8:e1340. doi: 10.1002/wcms.1340. DOI

Shiozaki T.. BAGEL: Brilliantly Advanced General Electronic-structure Library. WIREs Comput. Mol. Sci. 2018;8:e1331. doi: 10.1002/wcms.1331. DOI

Power E. A., Zienau S.. Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines. Philos. Trans. R. Soc. London, Ser. A, Math. Phys. Sci. 1959;251:427–454.

Woolley R. G.. Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules. Phys. Rev. Res. 2020;2:013206. doi: 10.1103/PhysRevResearch.2.013206. DOI

Taylor M. A. D., Mandal A., Huo P.. Light–matter interaction Hamiltonians in cavity quantum electrodynamics. Chem. Phys. Rev. 2025;6:011305. doi: 10.1063/5.0225932. DOI

Manderna, R. ; Roden, P. ; Tolley, P. L. ; Vu, N. ; Foley, J. J., IV. . Computational Modeling of Polariton Chemistry; American Chemical Society: Washington, DC, 2025.

Flick J., Ruggenthaler M., Appel H., Rubio A.. Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proc. Natl. Acad. Sci. U.S.A. 2015;112:15285–15290. doi: 10.1073/pnas.1518224112. PubMed DOI PMC

Valeev E. F., Harrison R. J., Holmes A. A., Peterson C. C., Penchoff D. A.. Direct Determination of Optimal Real-Space Orbitals for Correlated Electronic Structure of Molecules. J. Chem. Theory Comput. 2023;19:7230–7241. doi: 10.1021/acs.jctc.3c00732. PubMed DOI

Myhre R. H., Wolf T. J. A., Cheng L., Nandi S., Coriani S., Gühr M., Koch H.. A theoretical and experimental benchmark study of core-excited states in nitrogen. J. Chem. Phys. 2018;148:064106. doi: 10.1063/1.5011148. PubMed DOI

Roden P., Foley J. J. IV.. Perturbative analysis of the coherent state transformation in ab initio cavity quantum electrodynamics. J. Chem. Phys. 2024;161:194103. doi: 10.1063/5.0233717. PubMed DOI

Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M.. Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI

Foley, J. Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory (1.0). Zenodo 2025, 10.5281/zenodo.15595754 (Data set). PubMed DOI PMC

Francl M. M., Pietro W. J., Hehre W. J., Binkley J. S., Gordon M. S., DeFrees D. J., Pople J. A.. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI

Glover W. J.. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field. J. Chem. Phys. 2014;141:171102. doi: 10.1063/1.4901328. PubMed DOI

Kendall R. A., Dunning T. H. Jr., Harrison R. J.. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Gordon M. S., Binkley J. S., Pople J. A., Pietro W. J., Hehre W. J.. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982;104:2797. doi: 10.1021/ja00374a017. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...