Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36648273
PubMed Central
PMC10017021
DOI
10.1021/acs.jpclett.2c03298
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlation. In this work, we present the first step in the direction of combining DMRG with density functional theory (DFT), one of the most employed quantum chemical methods with favorable scaling, by means of the projection-based wave function (WF)-in-DFT embedding. On two proof-of-concept but important molecular examples, we demonstrate that the developed DMRG-in-DFT approach provides a very accurate description of molecules with a strongly correlated fragment.
Faculty of Mathematics and Physics Charles University 121 16Prague Czech Republic
Institute of Physics Lodz University of Technology ul Wolczanska 217 221 93 005Lodz Poland
Zobrazit více v PubMed
Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference Nature of Chemistry: The Coupled-cluster View. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI
Szalay P. G.; Müller T.; Gidofalvi G.; Lischka H.; Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012, 112, 108–181. 10.1021/cr200137a. PubMed DOI
Bartlett R. J.; Musiał M. Coupled-cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI
Roos B. O. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. Adv. Chem. Phys. 2007, 69, 399–445. 10.1002/9780470142943.ch7. DOI
Roos B. O.; Taylor P. R.; Sigbahn P. E. A Complete Active Space SCF Method (CASSCF) using a Density Matrix Formulated Super-CI Approach. Chem. Phys. 1980, 48, 157–173. 10.1016/0301-0104(80)80045-0. DOI
Andersson K.; Malmqvist P.-Å.; Roos B. O. Second-order Perturbation Theory with a Complete Active Space Self-consistent Field Reference Function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. DOI
Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001, 114, 10252–10264. 10.1063/1.1361246. DOI
White S. R. Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 1992, 69, 2863.10.1103/PhysRevLett.69.2863. PubMed DOI
White S. R.; Martin R. L. Ab Initio Quantum Chemistry using the Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI
Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI
Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor Product Methods and Entanglement Optimization for Ab Initio Quantum Chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI
Yanai T.; Kurashige Y.; Mizukami W.; Chalupskỳ J.; Lan T. N.; Saitow M. Density Matrix Renormalization Group for Ab Initio Calculations and Associated Dynamic Correlation Methods: A Review of Theory and Applications. Int. J. Quantum Chem. 2015, 115, 283–299. 10.1002/qua.24808. DOI
Baiardi A.; Reiher M. The Density Matrix Renormalization Group in Chemistry and Molecular Physics: Recent Developments and new Challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI
Cheng Y.; Xie Z.; Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J. Phys. Chem. Lett. 2022, 13, 904–915. 10.1021/acs.jpclett.1c04078. PubMed DOI
Burke K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901.10.1063/1.4704546. PubMed DOI
Jones L. O.; Mosquera M. A.; Schatz G. C.; Ratner M. A. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. J. Am. Chem. Soc. 2020, 142, 3281–3295. 10.1021/jacs.9b10780. PubMed DOI
Sun Q.; Chan G. K.-L. Quantum Embedding Theories. Acc. Chem. Res. 2016, 49, 2705–2712. 10.1021/acs.accounts.6b00356. PubMed DOI
Dresselhaus T.; Neugebauer J.; Knecht S.; Keller S.; Ma Y.; Reiher M. Self-consistent Embedding of Density-matrix Renormalization Group Wavefunctions in a Density Functional Environment. J. Chem. Phys. 2015, 142, 044111.10.1063/1.4906152. PubMed DOI
Manby F. R.; Stella M.; Goodpaster J. D.; Miller T. F. A Simple, Exact Density-Functional-Theory Embedding Scheme. J. Chem. Theory Comput.h 2012, 8, 2564–2568. 10.1021/ct300544e. PubMed DOI PMC
Ma H.; Sheng N.; Govoni M.; Galli G. Quantum embedding theory for strongly correlated states in materials. J. Chem. Theory Comput. 2021, 17, 2116–2125. 10.1021/acs.jctc.0c01258. PubMed DOI
Wesolowski T. A.; Shedge S.; Zhou X. Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem. Rev. 2015, 115, 5891–5928. 10.1021/cr500502v. PubMed DOI
Lan T. N.; Kananenka A. A.; Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 2015, 143, 241102.10.1063/1.4938562. PubMed DOI
Kowalski K. Properties of coupled-cluster equations originating in excitation sub-algebras. J. Chem. Phys. 2018, 148, 094104.10.1063/1.5010693. DOI
Bauman N. P.; Kowalski K. Coupled cluster downfolding methods: The effect of double commutator terms on the accuracy of ground-state energies. J. Chem. Phys. 2022, 156, 094106.10.1063/5.0076260. PubMed DOI
Lee S. J. R.; Welborn M.; Manby F. R.; Miller T. F. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368. 10.1021/acs.accounts.8b00672. PubMed DOI
Pavošević F.; Rubio A. Wavefunction Embedding for Molecular Polaritons. J. Chem. Phys. 2022, 157, 094101.10.1063/5.0095552. PubMed DOI
Schollwöck U. The Density-matrix Renormalization Group in the Age of Matrix Product States. Ann. Phys. 2011, 326, 96–192. 10.1016/j.aop.2010.09.012. DOI
Legeza O.; Sólyom J. Optimizing the Density-matrix Renormalization Group Method using Quantum Information Entropy. Phys. Rev. B 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI
Claudino D.; Mayhall N. J. Automatic Partition of Orbital Spaces Based on Singular Value Decomposition in the Context of Embedding Theories. J. Chem. Theory Comput.h 2019, 15, 1053–1064. 10.1021/acs.jctc.8b01112. PubMed DOI
Waldrop J. M.; Windus T. L.; Govind N. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. J. Phys. Chem. A 2021, 125, 6384–6393. 10.1021/acs.jpca.1c03821. PubMed DOI
de Lima Batista A. P.; de Oliveira-Filho A. G. S.; Galembeck S. E. Photophysical Properties and the NO Photorelease Mechanism of a Ruthenium Nitrosyl Model Complex Investigated using the CASSCF-in-DFT Embedding Approach. Phys. Chem. Chem. Phys. 2017, 19, 13860–13867. 10.1039/C7CP01642E. PubMed DOI
Smith D. G. A.; et al. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development. J. Chem. Theory Comput.h 2018, 14, 3504–3511. 10.1021/acs.jctc.8b00286. PubMed DOI
Brabec J.; Brandejs J.; Kowalski K.; Xantheas S.; Legeza Ö.; Veis L. Massively Parallel Quantum Chemical Density Matrix Renormalization Group Method. J. Comput. Chem. 2021, 42, 534–544. 10.1002/jcc.26476. PubMed DOI
Daniel C.; Gourlaouen C. Structural and Optical Properties of Metal-Nitrosyl Complexes. Molecules 2019, 24, 3638.10.3390/molecules24203638. PubMed DOI PMC
Awasabisah D.; Richter-Addo G. In Adv. Inorg. Chem.; Van Eldik R., Olabe J., Eds.; Academic Press: Cambridge, MA, 2015; Vol. 67; Chapter NOx Related Chemistry, pp 1–86.
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Perdew J. P.; Ernzerhof M.; Burke K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. 10.1063/1.472933. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Legeza Ö.; Röder J.; Hess B. Controlling the Accuracy of the Density-matrix Renormalization-Group Method: The Dynamical Block State Selection Approach. Phys. Rev. B 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI
Barcza G.; Legeza O.; Marti K. H.; Reiher M. Quantum-information Analysis of Electronic States of Different Molecular Structures. Phys. Rev. A 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI
Neese F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. 10.1002/wcms.81. DOI
Pernal K.; Hapka M.; Przybytek M.; Modrzejewski M.; Sokół A.. GammCor code. https://github.com/pernalk/GAMMCOR, 2022.
Werner H.-J.; et al. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152, 144107.10.1063/5.0005081. PubMed DOI
Dunning T. H. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Claudino D.; Mayhall N. J. Simple and Efficient Truncation of Virtual Spaces in Embedded Wave Functions via Concentric Localization. J. Chem. Theory Comput.h 2019, 15, 6085–6096. 10.1021/acs.jctc.9b00682. PubMed DOI
Kinoshita T.; Hino O.; Bartlett R. J. Coupled-cluster Method Tailored by Configuration Interaction. J. Chem. Phys. 2005, 123, 074106.10.1063/1.2000251. PubMed DOI
Goodpaster J. D.; Barnes T. A.; Manby F. R.; Miller T. F. Accurate and Systematically Improvable Density Functional Theory Embedding for Correlated Wavefunctions. J. Chem. Phys. 2014, 140, 18A507.10.1063/1.4864040. PubMed DOI
Hehre W. J.; Ditchfield R.; Pople J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. 10.1063/1.1677527. DOI
Rassolov V. A.; Pople J. A.; Ratner M. A.; Windus T. L. 6-31G* Basis Set for Atoms K Through Zn. J. Chem. Phys. 1998, 109, 1223–1229. 10.1063/1.476673. DOI
Epifanovsky E.; Gilbert A. T.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801.10.1063/5.0055522. PubMed DOI PMC
Pernal K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 013001.10.1103/PhysRevLett.120.013001. PubMed DOI
Pastorczak E.; Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J. Chem. Theory Comput. 2018, 14, 3493–3503. 10.1021/acs.jctc.8b00213. PubMed DOI
Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput.h 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI
Bensberg M.; Neugebauer J. Density functional theory based embedding approaches for transition-metal complexes. Phys. Chem. Chem. Phys. 2020, 22, 26093–26103. 10.1039/D0CP05188H. PubMed DOI
Drwal D.; Beran P.; Hapka M.; Modrzejewski M.; Sokół A.; Veis L.; Pernal K. Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals. J. Phys. Chem. Lett. 2022, 13, 4570–4578. 10.1021/acs.jpclett.2c00993. PubMed DOI PMC
Variational Quantum Eigensolver Boosted by Adiabatic Connection