Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding

. 2023 Jan 26 ; 14 (3) : 716-722. [epub] 20230117

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36648273

The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlation. In this work, we present the first step in the direction of combining DMRG with density functional theory (DFT), one of the most employed quantum chemical methods with favorable scaling, by means of the projection-based wave function (WF)-in-DFT embedding. On two proof-of-concept but important molecular examples, we demonstrate that the developed DMRG-in-DFT approach provides a very accurate description of molecules with a strongly correlated fragment.

Zobrazit více v PubMed

Lyakh D. I.; Musiał M.; Lotrich V. F.; Bartlett R. J. Multireference Nature of Chemistry: The Coupled-cluster View. Chem. Rev. 2012, 112, 182–243. 10.1021/cr2001417. PubMed DOI

Szalay P. G.; Müller T.; Gidofalvi G.; Lischka H.; Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012, 112, 108–181. 10.1021/cr200137a. PubMed DOI

Bartlett R. J.; Musiał M. Coupled-cluster Theory in Quantum Chemistry. Rev. Mod. Phys. 2007, 79, 291–352. 10.1103/RevModPhys.79.291. DOI

Roos B. O. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. Adv. Chem. Phys. 2007, 69, 399–445. 10.1002/9780470142943.ch7. DOI

Roos B. O.; Taylor P. R.; Sigbahn P. E. A Complete Active Space SCF Method (CASSCF) using a Density Matrix Formulated Super-CI Approach. Chem. Phys. 1980, 48, 157–173. 10.1016/0301-0104(80)80045-0. DOI

Andersson K.; Malmqvist P.-Å.; Roos B. O. Second-order Perturbation Theory with a Complete Active Space Self-consistent Field Reference Function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. DOI

Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001, 114, 10252–10264. 10.1063/1.1361246. DOI

White S. R. Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 1992, 69, 2863.10.1103/PhysRevLett.69.2863. PubMed DOI

White S. R.; Martin R. L. Ab Initio Quantum Chemistry using the Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI

Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI

Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor Product Methods and Entanglement Optimization for Ab Initio Quantum Chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI

Yanai T.; Kurashige Y.; Mizukami W.; Chalupskỳ J.; Lan T. N.; Saitow M. Density Matrix Renormalization Group for Ab Initio Calculations and Associated Dynamic Correlation Methods: A Review of Theory and Applications. Int. J. Quantum Chem. 2015, 115, 283–299. 10.1002/qua.24808. DOI

Baiardi A.; Reiher M. The Density Matrix Renormalization Group in Chemistry and Molecular Physics: Recent Developments and new Challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI

Cheng Y.; Xie Z.; Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J. Phys. Chem. Lett. 2022, 13, 904–915. 10.1021/acs.jpclett.1c04078. PubMed DOI

Burke K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901.10.1063/1.4704546. PubMed DOI

Jones L. O.; Mosquera M. A.; Schatz G. C.; Ratner M. A. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. J. Am. Chem. Soc. 2020, 142, 3281–3295. 10.1021/jacs.9b10780. PubMed DOI

Sun Q.; Chan G. K.-L. Quantum Embedding Theories. Acc. Chem. Res. 2016, 49, 2705–2712. 10.1021/acs.accounts.6b00356. PubMed DOI

Dresselhaus T.; Neugebauer J.; Knecht S.; Keller S.; Ma Y.; Reiher M. Self-consistent Embedding of Density-matrix Renormalization Group Wavefunctions in a Density Functional Environment. J. Chem. Phys. 2015, 142, 044111.10.1063/1.4906152. PubMed DOI

Manby F. R.; Stella M.; Goodpaster J. D.; Miller T. F. A Simple, Exact Density-Functional-Theory Embedding Scheme. J. Chem. Theory Comput.h 2012, 8, 2564–2568. 10.1021/ct300544e. PubMed DOI PMC

Ma H.; Sheng N.; Govoni M.; Galli G. Quantum embedding theory for strongly correlated states in materials. J. Chem. Theory Comput. 2021, 17, 2116–2125. 10.1021/acs.jctc.0c01258. PubMed DOI

Wesolowski T. A.; Shedge S.; Zhou X. Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem. Rev. 2015, 115, 5891–5928. 10.1021/cr500502v. PubMed DOI

Lan T. N.; Kananenka A. A.; Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 2015, 143, 241102.10.1063/1.4938562. PubMed DOI

Kowalski K. Properties of coupled-cluster equations originating in excitation sub-algebras. J. Chem. Phys. 2018, 148, 094104.10.1063/1.5010693. DOI

Bauman N. P.; Kowalski K. Coupled cluster downfolding methods: The effect of double commutator terms on the accuracy of ground-state energies. J. Chem. Phys. 2022, 156, 094106.10.1063/5.0076260. PubMed DOI

Lee S. J. R.; Welborn M.; Manby F. R.; Miller T. F. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368. 10.1021/acs.accounts.8b00672. PubMed DOI

Pavošević F.; Rubio A. Wavefunction Embedding for Molecular Polaritons. J. Chem. Phys. 2022, 157, 094101.10.1063/5.0095552. PubMed DOI

Schollwöck U. The Density-matrix Renormalization Group in the Age of Matrix Product States. Ann. Phys. 2011, 326, 96–192. 10.1016/j.aop.2010.09.012. DOI

Legeza O.; Sólyom J. Optimizing the Density-matrix Renormalization Group Method using Quantum Information Entropy. Phys. Rev. B 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI

Claudino D.; Mayhall N. J. Automatic Partition of Orbital Spaces Based on Singular Value Decomposition in the Context of Embedding Theories. J. Chem. Theory Comput.h 2019, 15, 1053–1064. 10.1021/acs.jctc.8b01112. PubMed DOI

Waldrop J. M.; Windus T. L.; Govind N. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. J. Phys. Chem. A 2021, 125, 6384–6393. 10.1021/acs.jpca.1c03821. PubMed DOI

de Lima Batista A. P.; de Oliveira-Filho A. G. S.; Galembeck S. E. Photophysical Properties and the NO Photorelease Mechanism of a Ruthenium Nitrosyl Model Complex Investigated using the CASSCF-in-DFT Embedding Approach. Phys. Chem. Chem. Phys. 2017, 19, 13860–13867. 10.1039/C7CP01642E. PubMed DOI

Smith D. G. A.; et al. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development. J. Chem. Theory Comput.h 2018, 14, 3504–3511. 10.1021/acs.jctc.8b00286. PubMed DOI

Brabec J.; Brandejs J.; Kowalski K.; Xantheas S.; Legeza Ö.; Veis L. Massively Parallel Quantum Chemical Density Matrix Renormalization Group Method. J. Comput. Chem. 2021, 42, 534–544. 10.1002/jcc.26476. PubMed DOI

Daniel C.; Gourlaouen C. Structural and Optical Properties of Metal-Nitrosyl Complexes. Molecules 2019, 24, 3638.10.3390/molecules24203638. PubMed DOI PMC

Awasabisah D.; Richter-Addo G. In Adv. Inorg. Chem.; Van Eldik R., Olabe J., Eds.; Academic Press: Cambridge, MA, 2015; Vol. 67; Chapter NOx Related Chemistry, pp 1–86.

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Perdew J. P.; Ernzerhof M.; Burke K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. 10.1063/1.472933. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Legeza Ö.; Röder J.; Hess B. Controlling the Accuracy of the Density-matrix Renormalization-Group Method: The Dynamical Block State Selection Approach. Phys. Rev. B 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI

Barcza G.; Legeza O.; Marti K. H.; Reiher M. Quantum-information Analysis of Electronic States of Different Molecular Structures. Phys. Rev. A 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI

Neese F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. 10.1002/wcms.81. DOI

Pernal K.; Hapka M.; Przybytek M.; Modrzejewski M.; Sokół A.. GammCor code. https://github.com/pernalk/GAMMCOR, 2022.

Werner H.-J.; et al. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152, 144107.10.1063/5.0005081. PubMed DOI

Dunning T. H. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Claudino D.; Mayhall N. J. Simple and Efficient Truncation of Virtual Spaces in Embedded Wave Functions via Concentric Localization. J. Chem. Theory Comput.h 2019, 15, 6085–6096. 10.1021/acs.jctc.9b00682. PubMed DOI

Kinoshita T.; Hino O.; Bartlett R. J. Coupled-cluster Method Tailored by Configuration Interaction. J. Chem. Phys. 2005, 123, 074106.10.1063/1.2000251. PubMed DOI

Goodpaster J. D.; Barnes T. A.; Manby F. R.; Miller T. F. Accurate and Systematically Improvable Density Functional Theory Embedding for Correlated Wavefunctions. J. Chem. Phys. 2014, 140, 18A507.10.1063/1.4864040. PubMed DOI

Hehre W. J.; Ditchfield R.; Pople J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. 10.1063/1.1677527. DOI

Rassolov V. A.; Pople J. A.; Ratner M. A.; Windus T. L. 6-31G* Basis Set for Atoms K Through Zn. J. Chem. Phys. 1998, 109, 1223–1229. 10.1063/1.476673. DOI

Epifanovsky E.; Gilbert A. T.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801.10.1063/5.0055522. PubMed DOI PMC

Pernal K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 013001.10.1103/PhysRevLett.120.013001. PubMed DOI

Pastorczak E.; Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J. Chem. Theory Comput. 2018, 14, 3493–3503. 10.1021/acs.jctc.8b00213. PubMed DOI

Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput.h 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI

Bensberg M.; Neugebauer J. Density functional theory based embedding approaches for transition-metal complexes. Phys. Chem. Chem. Phys. 2020, 22, 26093–26103. 10.1039/D0CP05188H. PubMed DOI

Drwal D.; Beran P.; Hapka M.; Modrzejewski M.; Sokół A.; Veis L.; Pernal K. Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals. J. Phys. Chem. Lett. 2022, 13, 4570–4578. 10.1021/acs.jpclett.2c00993. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Variational Quantum Eigensolver Boosted by Adiabatic Connection

. 2024 Jan 25 ; 128 (3) : 687-698. [epub] 20240112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...