Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet-Triplet Gaps of Biradicals

. 2022 May 26 ; 13 (20) : 4570-4578. [epub] 20220517

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35580342

Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet-triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.

Zobrazit více v PubMed

Roos B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 2007, 69, 399.10.1002/9780470142943.ch7. DOI

Olsen J. The CASSCF method: A perspective and commentary. Int. J. Quantum Chem. 2011, 111, 3267–3272. 10.1002/qua.23107. DOI

Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI

Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI

Olivares-Amaya R.; Hu W.; Nakatani N.; Sharma S.; Yang J.; Chan G. K.-L. The ab-initio density matrix renormalization group in practice. J. Chem. Phys. 2015, 142, 034102.10.1063/1.4905329. PubMed DOI

Baiardi A.; Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI

Cheng Y.; Xie Z.; Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J. Phys. Chem. Lett. 2022, 13, 904–915. 10.1021/acs.jpclett.1c04078. PubMed DOI

Roca-Sanjuán D.; Aquilante F.; Lindh R. Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 585–603. 10.1002/wcms.97. DOI

Mahajan A.; Blunt N. S.; Sabzevari I.; Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J. Chem. Phys. 2019, 151, 211102.10.1063/1.5128115. PubMed DOI

Blunt N. S.; Mahajan A.; Sharma S. Efficient multireference perturbation theory without high-order reduced density matrices. J. Chem. Phys. 2020, 153, 164120.10.1063/5.0023353. PubMed DOI

Kurashige Y.; Chalupskỳ J.; Lan T. N.; Yanai T. Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group. J. Chem. Phys. 2014, 141, 174111.10.1063/1.4900878. PubMed DOI

Guo Y.; Sivalingam K.; Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J. Chem. Phys. 2021, 154, 214111.10.1063/5.0051211. PubMed DOI

Guo Y.; Sivalingam K.; Kollmar C.; Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J. Chem. Phys. 2021, 154, 214113.10.1063/5.0051218. PubMed DOI

Lan T. N.; Kananenka A. A.; Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 2015, 143, 241102.10.1063/1.4938562. PubMed DOI

He N.; Evangelista F. A. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J. Chem. Phys. 2020, 152, 094107.10.1063/1.5142481. PubMed DOI

Kowalski K. Properties of coupled-cluster equations originating in excitation sub-algebras. J. Chem. Phys. 2018, 148, 094104.10.1063/1.5010693. DOI

Bauman N. P.; Kowalski K. Coupled cluster downfolding methods: The effect of double commutator terms on the accuracy of ground-state energies. J. Chem. Phys. 2022, 156, 094106.10.1063/5.0076260. PubMed DOI

Harris J.; Jones R. O. The surface energy of a bounded electron gas. J. Phys. F: Met. Phys. 1974, 4, 1170.10.1088/0305-4608/4/8/013. DOI

Langreth D.; Perdew J. Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884.10.1103/PhysRevB.15.2884. DOI

Gunnarsson O.; Lundqvist B. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274.10.1103/PhysRevB.13.4274. DOI

Teale A. M.; Coriani S.; Helgaker T. Accurate calculation and modeling of the adiabatic connection in density functional theory. J. Chem. Phys. 2010, 132, 164115.10.1063/1.3380834. PubMed DOI

Pernal K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 013001.10.1103/PhysRevLett.120.013001. PubMed DOI

Pernal K. Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states. J. Chem. Phys. 2018, 149, 204101.10.1063/1.5048988. PubMed DOI

Rosta E.; Surján P. Two-body zeroth order Hamiltonians in multireference perturbation theory: The APSG reference state. J. Chem. Phys. 2002, 116, 878.10.1063/1.1427918. DOI

Pastorczak E.; Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J. Chem. Theory Comput. 2018, 14, 3493–3503. 10.1021/acs.jctc.8b00213. PubMed DOI

Pastorczak E.; Pernal K. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions. J. Phys. Chem. Lett. 2018, 9, 5534–5538. 10.1021/acs.jpclett.8b02391. PubMed DOI

Rowe D. J. Equations-of-Motion Method and the Extended Shell Model. Rev. Mod. Phys. 1968, 40, 153.10.1103/RevModPhys.40.153. DOI

Chatterjee K.; Pernal K. Excitation energies from extended random phase approximation employed with approximate one-and two-electron reduced density matrices. J. Chem. Phys. 2012, 137, 204109.10.1063/1.4766934. PubMed DOI

Eshuis H.; Bates J.; Furche F. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 2012, 131, 1084.10.1007/s00214-011-1084-8. DOI

Chen G.; Voora V.; Agee M.; Balasubramani S.; Furche F. Random-phase approximation methods. Annu. Rev. Phys. Chem. 2017, 68, 421.10.1146/annurev-physchem-040215-112308. PubMed DOI

Ren X.; Rinke P.; Joas C.; Scheffler M. Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 2012, 47, 7447.10.1007/s10853-012-6570-4. DOI

Pernal K.; Chatterjee K.; Kowalski P. H. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches. J. Chem. Phys. 2014, 140, 014101.10.1063/1.4855275. PubMed DOI

Pernal K. Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation. J. Chem. Theory Comput. 2014, 10, 4332–4341. 10.1021/ct500478t. PubMed DOI

Pastorczak E.; Hapka M.; Veis L.; Pernal K. Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical. J. Phys. Chem. Lett. 2019, 10, 4668–4674. 10.1021/acs.jpclett.9b01582. PubMed DOI

Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density matrix renormalization group with dynamical correlation via adiabatic connection. J. Chem. Theory Comput. 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI

Drwal D.; Pastorczak E.; Pernal K. Excited states in the adiabatic connection fluctuation-dissipation theory: Recovering missing correlation energy from the negative part of the density response spectrum. J. Chem. Phys. 2021, 154, 164102.10.1063/5.0046852. PubMed DOI

Furche F. On the density matrix based approach to time-dependent density functional response theory. J. Chem. Phys. 2001, 114, 5982–5992. 10.1063/1.1353585. DOI

Modrzejewski M.; Yourdkhani S.; Klimeš J. Random phase approximation applied to many-body noncovalent systems. J. Chem. Theory Comput 2020, 16, 427–442. 10.1021/acs.jctc.9b00979. PubMed DOI

Modrzejewski M.; Yourdkhani S.; Śmiga S.; Klimeš J. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. J. Chem. Theory Comput 2021, 17, 804–817. 10.1021/acs.jctc.0c00966. PubMed DOI

Aquilante F.; Boman L.; Bostrom J.; Koch H.; Lindh R.; de Meras A. S.; Pedersen T. B. In Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications; Zalesny R., Papadopoulos M. G., Mezey P. G., Leszczynski J., Eds.; Springer Netherlands: Dordrecht, 2011; pp 301–343.

Ren X.; Rinke P.; Blum V.; Wieferink J.; Tkatchenko A.; Sanfilippo A.; Reuter K.; Scheffler M. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 2012, 14, 053020.10.1088/1367-2630/14/5/053020. DOI

Schreiber M.; Silva-Junior M. R.; Sauer S. P.; Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.10.1063/1.2889385. PubMed DOI

Stoneburner S. J.; Shen J.; Ajala A. O.; Piecuch P.; Truhlar D. G.; Gagliardi L. Systematic design of active spaces for multi-reference calculations of singlet–triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data. J. Chem. Phys. 2017, 147, 164120.10.1063/1.4998256. PubMed DOI

Schäfer A.; Horn H.; Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. 10.1063/1.463096. DOI

Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI

Pernal K.; Hapka M.; Przybytek M.; Modrzejewski M.; Sokół A.. GammCor code. https://github.com/pernalk/GAMMCOR, 2022.

Schapiro I.; Sivalingam K.; Neese F. Assessment of n-electron valence state perturbation theory for vertical excitation energies. J. Chem. Theory Comput. 2013, 9, 3567–3580. 10.1021/ct400136y. PubMed DOI

Tishchenko O.; Zheng J.; Truhlar D. G. Multireference Model Chemistries for Thermochemical Kinetics. J. Chem. Theory Comput. 2008, 4, 1208–1219. 10.1021/ct800077r. PubMed DOI

Stein C. J.; Reiher M. Automated Selection of Active Orbital Spaces. J. Chem. Theory Comput. 2016, 12, 1760–1771. 10.1021/acs.jctc.6b00156. PubMed DOI

Legeza O.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B 2003, 68, 122491192.10.1103/PhysRevB.68.195116. DOI

Golub P.; Antalik A.; Veis L.; Brabec J. Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. J. Chem. Theory Comput. 2021, 17, 6053–6072. 10.1021/acs.jctc.1c00235. PubMed DOI

Stoneburner S. J.; Truhlar D. G.; Gagliardi L. MC-PDFT can calculate singlet–triplet splittings of organic diradicals. J. Chem. Phys. 2018, 148, 064108.10.1063/1.5017132. PubMed DOI

Li Manni G.; Carlson R. K.; Luo S.; Ma D.; Olsen J.; Truhlar D. G.; Gagliardi L. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 2014, 10, 3669–3680. 10.1021/ct500483t. PubMed DOI

Ghigo G.; Roos B. O.; Malmqvist P.-Å. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 2004, 396, 142–149. 10.1016/j.cplett.2004.08.032. DOI

Kepenekian M.; Robert V.; Le Guennic B. What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures?. J. Chem. Phys. 2009, 131, 114702.10.1063/1.3211020. PubMed DOI

Lawson Daku L. M.; Aquilante F.; Robinson T. W.; Hauser A. Accurate spin-state energetics of transition metal complexes. 1. CCSD (T), CASPT2, and DFT study of [M(NCH)6]2+(M = Fe, Co). J. Chem. Theory Comput. 2012, 8, 4216–4231. 10.1021/ct300592w. PubMed DOI

Rintelman J. M.; Adamovic I.; Varganov S.; Gordon M. S. Multireference second-order perturbation theory: How size consistent is almost size consistent?. J. Chem. Phys. 2005, 122, 044105.10.1063/1.1817891. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...