Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet-Triplet Gaps of Biradicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35580342
PubMed Central
PMC9150121
DOI
10.1021/acs.jpclett.2c00993
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet-triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.
Faculty of Chemistry University of Warsaw ul L Pasteura 1 02 093 Warsaw Poland
Institute of Physics Lodz University of Technology ul Wolczanska 219 90 924 Lodz Poland
Zobrazit více v PubMed
Roos B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 2007, 69, 399.10.1002/9780470142943.ch7. DOI
Olsen J. The CASSCF method: A perspective and commentary. Int. J. Quantum Chem. 2011, 111, 3267–3272. 10.1002/qua.23107. DOI
Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI
Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI
Olivares-Amaya R.; Hu W.; Nakatani N.; Sharma S.; Yang J.; Chan G. K.-L. The ab-initio density matrix renormalization group in practice. J. Chem. Phys. 2015, 142, 034102.10.1063/1.4905329. PubMed DOI
Baiardi A.; Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI
Cheng Y.; Xie Z.; Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J. Phys. Chem. Lett. 2022, 13, 904–915. 10.1021/acs.jpclett.1c04078. PubMed DOI
Roca-Sanjuán D.; Aquilante F.; Lindh R. Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 585–603. 10.1002/wcms.97. DOI
Mahajan A.; Blunt N. S.; Sabzevari I.; Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J. Chem. Phys. 2019, 151, 211102.10.1063/1.5128115. PubMed DOI
Blunt N. S.; Mahajan A.; Sharma S. Efficient multireference perturbation theory without high-order reduced density matrices. J. Chem. Phys. 2020, 153, 164120.10.1063/5.0023353. PubMed DOI
Kurashige Y.; Chalupskỳ J.; Lan T. N.; Yanai T. Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group. J. Chem. Phys. 2014, 141, 174111.10.1063/1.4900878. PubMed DOI
Guo Y.; Sivalingam K.; Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J. Chem. Phys. 2021, 154, 214111.10.1063/5.0051211. PubMed DOI
Guo Y.; Sivalingam K.; Kollmar C.; Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J. Chem. Phys. 2021, 154, 214113.10.1063/5.0051218. PubMed DOI
Lan T. N.; Kananenka A. A.; Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 2015, 143, 241102.10.1063/1.4938562. PubMed DOI
He N.; Evangelista F. A. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J. Chem. Phys. 2020, 152, 094107.10.1063/1.5142481. PubMed DOI
Kowalski K. Properties of coupled-cluster equations originating in excitation sub-algebras. J. Chem. Phys. 2018, 148, 094104.10.1063/1.5010693. DOI
Bauman N. P.; Kowalski K. Coupled cluster downfolding methods: The effect of double commutator terms on the accuracy of ground-state energies. J. Chem. Phys. 2022, 156, 094106.10.1063/5.0076260. PubMed DOI
Harris J.; Jones R. O. The surface energy of a bounded electron gas. J. Phys. F: Met. Phys. 1974, 4, 1170.10.1088/0305-4608/4/8/013. DOI
Langreth D.; Perdew J. Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884.10.1103/PhysRevB.15.2884. DOI
Gunnarsson O.; Lundqvist B. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274.10.1103/PhysRevB.13.4274. DOI
Teale A. M.; Coriani S.; Helgaker T. Accurate calculation and modeling of the adiabatic connection in density functional theory. J. Chem. Phys. 2010, 132, 164115.10.1063/1.3380834. PubMed DOI
Pernal K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 013001.10.1103/PhysRevLett.120.013001. PubMed DOI
Pernal K. Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states. J. Chem. Phys. 2018, 149, 204101.10.1063/1.5048988. PubMed DOI
Rosta E.; Surján P. Two-body zeroth order Hamiltonians in multireference perturbation theory: The APSG reference state. J. Chem. Phys. 2002, 116, 878.10.1063/1.1427918. DOI
Pastorczak E.; Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J. Chem. Theory Comput. 2018, 14, 3493–3503. 10.1021/acs.jctc.8b00213. PubMed DOI
Pastorczak E.; Pernal K. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions. J. Phys. Chem. Lett. 2018, 9, 5534–5538. 10.1021/acs.jpclett.8b02391. PubMed DOI
Rowe D. J. Equations-of-Motion Method and the Extended Shell Model. Rev. Mod. Phys. 1968, 40, 153.10.1103/RevModPhys.40.153. DOI
Chatterjee K.; Pernal K. Excitation energies from extended random phase approximation employed with approximate one-and two-electron reduced density matrices. J. Chem. Phys. 2012, 137, 204109.10.1063/1.4766934. PubMed DOI
Eshuis H.; Bates J.; Furche F. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 2012, 131, 1084.10.1007/s00214-011-1084-8. DOI
Chen G.; Voora V.; Agee M.; Balasubramani S.; Furche F. Random-phase approximation methods. Annu. Rev. Phys. Chem. 2017, 68, 421.10.1146/annurev-physchem-040215-112308. PubMed DOI
Ren X.; Rinke P.; Joas C.; Scheffler M. Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 2012, 47, 7447.10.1007/s10853-012-6570-4. DOI
Pernal K.; Chatterjee K.; Kowalski P. H. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches. J. Chem. Phys. 2014, 140, 014101.10.1063/1.4855275. PubMed DOI
Pernal K. Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation. J. Chem. Theory Comput. 2014, 10, 4332–4341. 10.1021/ct500478t. PubMed DOI
Pastorczak E.; Hapka M.; Veis L.; Pernal K. Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical. J. Phys. Chem. Lett. 2019, 10, 4668–4674. 10.1021/acs.jpclett.9b01582. PubMed DOI
Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density matrix renormalization group with dynamical correlation via adiabatic connection. J. Chem. Theory Comput. 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI
Drwal D.; Pastorczak E.; Pernal K. Excited states in the adiabatic connection fluctuation-dissipation theory: Recovering missing correlation energy from the negative part of the density response spectrum. J. Chem. Phys. 2021, 154, 164102.10.1063/5.0046852. PubMed DOI
Furche F. On the density matrix based approach to time-dependent density functional response theory. J. Chem. Phys. 2001, 114, 5982–5992. 10.1063/1.1353585. DOI
Modrzejewski M.; Yourdkhani S.; Klimeš J. Random phase approximation applied to many-body noncovalent systems. J. Chem. Theory Comput 2020, 16, 427–442. 10.1021/acs.jctc.9b00979. PubMed DOI
Modrzejewski M.; Yourdkhani S.; Śmiga S.; Klimeš J. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. J. Chem. Theory Comput 2021, 17, 804–817. 10.1021/acs.jctc.0c00966. PubMed DOI
Aquilante F.; Boman L.; Bostrom J.; Koch H.; Lindh R.; de Meras A. S.; Pedersen T. B. In Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications; Zalesny R., Papadopoulos M. G., Mezey P. G., Leszczynski J., Eds.; Springer Netherlands: Dordrecht, 2011; pp 301–343.
Ren X.; Rinke P.; Blum V.; Wieferink J.; Tkatchenko A.; Sanfilippo A.; Reuter K.; Scheffler M. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 2012, 14, 053020.10.1088/1367-2630/14/5/053020. DOI
Schreiber M.; Silva-Junior M. R.; Sauer S. P.; Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.10.1063/1.2889385. PubMed DOI
Stoneburner S. J.; Shen J.; Ajala A. O.; Piecuch P.; Truhlar D. G.; Gagliardi L. Systematic design of active spaces for multi-reference calculations of singlet–triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data. J. Chem. Phys. 2017, 147, 164120.10.1063/1.4998256. PubMed DOI
Schäfer A.; Horn H.; Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. 10.1063/1.463096. DOI
Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI
Pernal K.; Hapka M.; Przybytek M.; Modrzejewski M.; Sokół A.. GammCor code. https://github.com/pernalk/GAMMCOR, 2022.
Schapiro I.; Sivalingam K.; Neese F. Assessment of n-electron valence state perturbation theory for vertical excitation energies. J. Chem. Theory Comput. 2013, 9, 3567–3580. 10.1021/ct400136y. PubMed DOI
Tishchenko O.; Zheng J.; Truhlar D. G. Multireference Model Chemistries for Thermochemical Kinetics. J. Chem. Theory Comput. 2008, 4, 1208–1219. 10.1021/ct800077r. PubMed DOI
Stein C. J.; Reiher M. Automated Selection of Active Orbital Spaces. J. Chem. Theory Comput. 2016, 12, 1760–1771. 10.1021/acs.jctc.6b00156. PubMed DOI
Legeza O.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B 2003, 68, 122491192.10.1103/PhysRevB.68.195116. DOI
Golub P.; Antalik A.; Veis L.; Brabec J. Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. J. Chem. Theory Comput. 2021, 17, 6053–6072. 10.1021/acs.jctc.1c00235. PubMed DOI
Stoneburner S. J.; Truhlar D. G.; Gagliardi L. MC-PDFT can calculate singlet–triplet splittings of organic diradicals. J. Chem. Phys. 2018, 148, 064108.10.1063/1.5017132. PubMed DOI
Li Manni G.; Carlson R. K.; Luo S.; Ma D.; Olsen J.; Truhlar D. G.; Gagliardi L. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 2014, 10, 3669–3680. 10.1021/ct500483t. PubMed DOI
Ghigo G.; Roos B. O.; Malmqvist P.-Å. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 2004, 396, 142–149. 10.1016/j.cplett.2004.08.032. DOI
Kepenekian M.; Robert V.; Le Guennic B. What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures?. J. Chem. Phys. 2009, 131, 114702.10.1063/1.3211020. PubMed DOI
Lawson Daku L. M.; Aquilante F.; Robinson T. W.; Hauser A. Accurate spin-state energetics of transition metal complexes. 1. CCSD (T), CASPT2, and DFT study of [M(NCH)6]2+(M = Fe, Co). J. Chem. Theory Comput. 2012, 8, 4216–4231. 10.1021/ct300592w. PubMed DOI
Rintelman J. M.; Adamovic I.; Varganov S.; Gordon M. S. Multireference second-order perturbation theory: How size consistent is almost size consistent?. J. Chem. Phys. 2005, 122, 044105.10.1063/1.1817891. PubMed DOI
Variational Quantum Eigensolver Boosted by Adiabatic Connection
Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding