Role of Spin Polarization and Dynamic Correlation in Singlet-Triplet Gap Inversion of Heptazine Derivatives

. 2023 Nov 14 ; 19 (21) : 7606-7616. [epub] 20231021

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37864544

The new generation of proposed light-emitting molecules for organic light-emitting diodes (OLEDs) has raised considerable research interest due to its exceptional feature─a negative singlet-triplet (ST) gap violating Hund's multiplicity rule in the excited S1 and T1 states. We investigate the role of spin polarization in the mechanism of ST gap inversion. Spin polarization is associated with doubly excited determinants of certain types, whose presence in the wave function expansion favors the energy of the singlet state more than that of the triplet. Using a perturbation theory-based model for spin polarization, we propose a simple descriptor for prescreening of candidate molecules with negative ST gaps and prove its usefulness for heptazine-type molecules. Numerical results show that the quantitative effect of spin polarization decreases linearly with the increasing highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) exchange integral. Comparison of single- and multireference coupled-cluster predictions of ST gaps shows that the former methods provide good accuracy by correctly balancing the effects of doubly excited determinants and dynamic correlation. We also show that accurate ST gaps may be obtained using a complete active space model supplemented with dynamic correlation from multireference adiabatic connection theory.

Zobrazit více v PubMed

Tyan Y.-S. Organic light-emitting-diode lighting overview. J. Photonics Energy 2011, 1, 011009.10.1117/1.3529412. DOI

Hong G.; Gan X.; Leonhardt C.; Zhang Z.; Seibert J.; Busch J. M.; Bräse S. A Brief History of OLEDs—Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 200563010.1002/adma.202005630. PubMed DOI

Hund F. Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. Z. Phys. 1925, 33, 345–371. 10.1007/BF01328319. DOI

Li Z.; Li Z. R.; Meng H.. Organic Light-Emitting Materials and Devices; CRC Press, 2006.

Endo A.; Sato K.; Yoshimura K.; Kai T.; Kawada A.; Miyazaki H.; Adachi C. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011, 98, 08330210.1063/1.3558906. DOI

Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. 10.1038/nature11687. PubMed DOI

Goushi K.; Yoshida K.; Sato K.; Adachi C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 2012, 6, 253–258. 10.1038/nphoton.2012.31. DOI

Nakanotani H.; Higuchi T.; Furukawa T.; Masui K.; Morimoto K.; Numata M.; Tanaka H.; Sagara Y.; Yasuda T.; Adachi C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 2014, 5, 401610.1038/ncomms5016. PubMed DOI

Hosokai T.; Matsuzaki H.; Nakanotani H.; Tokumaru K.; Tsutsui T.; Furube A.; Nasu K.; Nomura H.; Yahiro M.; Adachi C. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Sci. Adv. 2017, 3, e160328210.1126/sciadv.1603282. PubMed DOI PMC

de Silva P. Inverted singlet–triplet gaps and their relevance to thermally activated delayed fluorescence. J. Phys. Chem. Lett. 2019, 10, 5674–5679. 10.1021/acs.jpclett.9b02333. PubMed DOI

Sobolewski A. L.; Domcke W. Are heptazine-based organic light-emitting diode chromophores thermally activated delayed fluorescence or inverted singlet–triplet systems?. J. Phys. Chem. Lett. 2021, 12, 6852–6860. 10.1021/acs.jpclett.1c01926. PubMed DOI

Pios S.; Huang X.; Sobolewski A. L.; Domcke W. Triangular boron carbon nitrides: An unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Phys. Chem. Chem. Phys. 2021, 23, 12968–12975. 10.1039/D1CP02026A. PubMed DOI

Ricci G.; Sancho-García J.-C.; Olivier Y. Establishing design strategies for emissive materials with an inverted singlet–triplet energy gap (INVEST): a computational perspective on how symmetry rules the interplay between triplet harvesting and light emission. J. Mater. Chem. C 2022, 10, 12680–12698. 10.1039/D2TC02508F. DOI

Ehrmaier J.; Huang X.; Rabe E. J.; Corp K. L.; Schlenker C. W.; Sobolewski A. L.; Domcke W. Molecular design of heptazine-based photocatalysts: effect of substituents on photocatalytic efficiency and photostability. J. Phys. Chem. A 2020, 124, 3698–3710. 10.1021/acs.jpca.0c00488. PubMed DOI

Ehrmaier J.; Rabe E. J.; Pristash S. R.; Corp K. L.; Schlenker C. W.; Sobolewski A. L.; Domcke W. Singlet–triplet inversion in heptazine and in polymeric carbon nitrides. J. Phys. Chem. A 2019, 123, 8099–8108. 10.1021/acs.jpca.9b06215. PubMed DOI

Li J.; Nakagawa T.; MacDonald J.; Zhang Q.; Nomura H.; Miyazaki H.; Adachi C. Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative. Adv. Mater. 2013, 25, 3319–3323. 10.1002/adma.201300575. PubMed DOI

Li J.; Zhang Q.; Nomura H.; Miyazaki H.; Adachi C. Thermally activated delayed fluorescence from 3n π* to 1n π* up-conversion and its application to organic light-emitting diodes. Appl. Phys. Lett. 2014, 105, 01330110.1063/1.4887346. DOI

Li J.; Nomura H.; Miyazaki H.; Adachi C. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor. Chem. Commun. 2014, 50, 6174–6176. 10.1039/C4CC01590H. PubMed DOI

Ricci G.; San-Fabián E.; Olivier Y.; Sancho-García J.-C. Singlet-triplet excited-state inversion in heptazine and related molecules: assessment of TD-DFT and ab initio methods. ChemPhysChem 2021, 22, 553–560. 10.1002/cphc.202000926. PubMed DOI

Sanz-Rodrigo J.; Ricci G.; Olivier Y.; Sancho-Garcia J.-C. Negative singlet–triplet excitation energy gap in triangle-shaped molecular emitters for efficient triplet harvesting. J. Phys. Chem. A 2021, 125, 513–522. 10.1021/acs.jpca.0c08029. PubMed DOI

Aizawa N.; Pu Y.-J.; Harabuchi Y.; Nihonyanagi A.; Ibuka R.; Inuzuka H.; Dhara B.; Koyama Y.; Nakayama K.-i.; Maeda S.; Araoka F.; Miyajima D. Delayed fluorescence from inverted singlet and triplet excited states. Nature 2022, 609, 502–506. 10.1038/s41586-022-05132-y. PubMed DOI PMC

Kollmar H.; Staemmler V. Violation of Hund’s rule by spin polarization in molecules. Theor. Chim. Acta 1978, 48, 223–239. 10.1007/BF00549021. DOI

Pollice R.; Friederich P.; Lavigne C.; dos Passos Gomes G.; Aspuru-Guzik A. Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter 2021, 4, 1654–1682. 10.1016/j.matt.2021.02.017. DOI

Tučková L.; Straka M.; Valiev R. R.; Sundholm D. On the origin of the inverted singlet–triplet gap of the 5th generation light-emitting molecules. Phys. Chem. Chem. Phys. 2022, 24, 18713–18721. 10.1039/D2CP02364D. PubMed DOI

Bhattacharyya K. Can TDDFT render the electronic excited states ordering of Azine derivative? A closer investigation with DLPNO-STEOM-CCSD. Chem. Phys. Lett. 2021, 779, 138827.10.1016/j.cplett.2021.138827. DOI

Ghosh S.; Bhattacharyya K. Origin of the Failure of Density Functional Theories in Predicting Inverted Singlet–Triplet Gaps. J. Phys. Chem. A 2022, 126, 1378–1385. 10.1021/acs.jpca.1c10492. PubMed DOI PMC

Koseki S.; Nakajima T.; Toyota A. Violation of Hund’s multiplicity rule in the electronically excited states of conjugated hydrocarbons. Can. J. Chem. 1985, 63, 1572–1579. 10.1139/v85-267. DOI

Harris J.; Jones R. O. The surface energy of a bounded electron gas. J. Phys. F: Met. Phys. 1974, 4, 1170.10.1088/0305-4608/4/8/013. DOI

Langreth D. C.; Perdew J. Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys. Rev. B 1977, 15, 2884.10.1103/PhysRevB.15.2884. DOI

Gunnarsson O.; Lundqvist B. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274.10.1103/PhysRevB.13.4274. DOI

Teale A. M.; Coriani S.; Helgaker T. Accurate calculation and modeling of the adiabatic connection in density functional theory. J. Chem. Phys. 2010, 132, 16411510.1063/1.3380834. PubMed DOI

Pernal K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018, 120, 01300110.1103/PhysRevLett.120.013001. PubMed DOI

Pernal K. Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states. J. Chem. Phys. 2018, 149, 20410110.1063/1.5048988. PubMed DOI

Drwal D.; Beran P.; Hapka M.; Modrzejewski M.; Sokół A.; Veis L.; Pernal K. Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals. J. Phys. Chem. Lett. 2022, 13, 4570–4578. 10.1021/acs.jpclett.2c00993. PubMed DOI PMC

Angeli C.; Cimiraglia R.; Malrieu J.-P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138.10.1063/1.1515317. DOI

Bhaskaran-Nair K.; Brabec J.; Aprà E.; van Dam H. J. J.; Pittner J.; Kowalski K. Implementation of the multireference Brillouin-Wigner and Mukherjee’s coupled cluster methods with non-iterative triple excitations utilizing reference-level parallelism. J. Chem. Phys. 2012, 137, 09411210.1063/1.4747698. PubMed DOI

Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI

Schäfer A.; Horn H.; Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. 10.1063/1.463096. DOI

Pernal K.; Hapka M.; Przybytek M.; Modrzejewski M.; Sokół A.; Tucholska A.. GammCor code. https://github.com/pernalk/GAMMCOR, 2023.

Aprà E.; Bylaska E. J.; de Jong W. A.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 18410210.1063/5.0004997. PubMed DOI

Neese F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. 10.1002/wcms.81. DOI

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.10.1103/PhysRevB.37.785. PubMed DOI

Miehlich B.; Savin A.; Stoll H.; Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. 10.1016/0009-2614(89)87234-3. DOI

Pastorczak E.; Pernal K. Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions. J. Chem. Theory Comput. 2018, 14, 3493–3503. 10.1021/acs.jctc.8b00213. PubMed DOI

Pastorczak E.; Pernal K. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions. J. Phys. Chem. Lett. 2018, 9, 5534–5538. 10.1021/acs.jpclett.8b02391. PubMed DOI

Pastorczak E.; Hapka M.; Veis L.; Pernal K. Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical. J. Phys. Chem. Lett. 2019, 10, 4668–4674. 10.1021/acs.jpclett.9b01582. PubMed DOI

Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density matrix renormalization group with dynamical correlation via adiabatic connection. J. Chem. Theory Comput. 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI

Matoušek M.; Hapka M.; Veis L.; Pernal K. Toward more accurate adiabatic connection approach for multireference wavefunctions. J. Chem. Phys. 2023, 158, 05410510.1063/5.0131448. PubMed DOI

Dreuw A.; Hoffmann M. T. The inverted singlet-triplet gap: a vanishing myth?. Front. Chem. 2023, 11, 123960410.3389/fchem.2023.1239604. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...