Benzimidazoles Downregulate Mdm2 and MdmX and Activate p53 in MdmX Overexpressing Tumor Cells

. 2019 Jun 07 ; 24 (11) : . [epub] 20190607

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31181622

Grantová podpora
LQ1605 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1087/2018 Ministerstvo Školství, Mládeže a Tělovýchovy

Tumor suppressor p53 is mutated in about 50% of cancers. Most malignant melanomas carry wild-type p53, but p53 activity is often inhibited due to overexpression of its negative regulators Mdm2 or MdmX. We performed high throughput screening of 2448 compounds on A375 cells carrying p53 activity luciferase reporter construct to reveal compounds that promote p53 activity in melanoma. Albendazole and fenbendazole, two approved and commonly used benzimidazole anthelmintics, stimulated p53 activity and were selected for further studies. The protein levels of p53 and p21 increased upon the treatment with albendazole and fenbendazole, indicating activation of the p53-p21 pathway, while the levels of Mdm2 and MdmX decreased in melanoma and breast cancer cells overexpressing these proteins. We also observed a reduction of cell viability and changes of cellular morphology corresponding to mitotic catastrophe, i.e., G2/M cell cycle arrest of large multinucleated cells with disrupted microtubules. In summary, we established a new tool for testing the impact of small molecule compounds on the activity of p53 and used it to identify the action of benzimidazoles in melanoma cells. The drugs promoted the stability and transcriptional activity of wild-type p53 via downregulation of its negative regulators Mdm2 and MdmX in cells overexpressing these proteins. The results indicate the potential for repurposing the benzimidazole anthelmintics for the treatment of cancers overexpressing p53 negative regulators.

Zobrazit více v PubMed

Karni-Schmidt O., Lokshin M., Prives C. The roles of MDM2 and MDMX in cancer. Annu. Rev. Pathol. 2016;11:617–644. doi: 10.1146/annurev-pathol-012414-040349. PubMed DOI PMC

Toledo F., Wahl G.M. Review: MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 2007;39:1476–1482. doi: 10.1016/j.biocel.2007.03.022. PubMed DOI PMC

Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. Febs Lett. 1997;420:25–27. doi: 10.1016/S0014-5793(97)01480-4. PubMed DOI

Shadfan M., Lopez-Pajares V., Yuan Z.-M. MDM2 and MDMX: Alone and together in regulation of p53. Transl. Cancer Res. 2012;1:88–99. PubMed PMC

Wade M., Li Y.-C., Wahl G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96. doi: 10.1038/nrc3430. PubMed DOI PMC

Gembarska A., Luciani F., Fedele C., Russell E.A., Dewaele M., Villar S., Zwolinska A., Haupt S., de Lange J., Yip D., et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat. Med. 2012;18:1239–1247. doi: 10.1038/nm.2863. PubMed DOI PMC

Word Health Organization . In: World Cancer Report 2014. Stewart B.W., Wild C.P., editors. International Agency for Research on Cancer; Lyon, France: 2014.

Domingues B., Lopes J., Soares P., Populo H. Melanoma treatment in review. Immunotargets Ther. 2018;7:35–49. doi: 10.2147/ITT.S134842. PubMed DOI PMC

Telleria C.M. Drug repurposing for cancer therapy. J. Cancer Sci. Ther. 2012;4:ix–xi. doi: 10.4172/1948-5956.1000e108. PubMed DOI PMC

Russell G.J., Lacey E. Inhibition of [3H] mebendazole binding to tubulin by structurally diverse microtubule inhibitors which interact at the colchicine binding site. Biochem. Mol. Biol. Int. 1995;35:1153–1159. PubMed

Nogales E. Structural insights into microtubule function. Annu. Rev. Biochem. 2000;69:277–302. doi: 10.1146/annurev.biochem.69.1.277. PubMed DOI

Khalilzadeh A., Wangoo K.T., Morris D.L., Pourgholami M.H. Epothilone-paclitaxel resistant leukemic cells CEM/dEpoB300 are sensitive to albendazole: Involvement of apoptotic pathways. Biochem. Pharmacol. 2007;74:407–414. doi: 10.1016/j.bcp.2007.05.006. PubMed DOI

Chu S.W.L., Badar S., Morris D.L., Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009;29:3791–3796. PubMed

Upcroft P., Upcroft J. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev. 2001;14:150–164. doi: 10.1128/CMR.14.1.150-164.2001. PubMed DOI PMC

Martin R.J. Modes of action of anthelmintic drugs. Vet. J. 1997;154:11–34. doi: 10.1016/S1090-0233(05)80005-X. PubMed DOI

Castro L.S.E.P.W., Kviecinski M.R., Ourique F., Parisotto E.B., Grinevicius V.M.A.S., Correia J.F.G., Wilhelm Filho D., Pedrosa R.C. Albendazole as a promising molecule for tumor control. Redox Biol. 2016;10:90–99. doi: 10.1016/j.redox.2016.09.013. PubMed DOI PMC

Seaton A., Higgins C., Mann J., Baron A., Bailly C., Neidle S., van den Berg H. Mechanistic and anti-proliferative studies of two novel, biologically active bis-benzimidazoles. Eur. J. Cancer. 2003;39:2548–2555. doi: 10.1016/S0959-8049(03)00621-X. PubMed DOI

Pourgholami M.H., Woon L., Almajd R., Akhter J., Bowery P., Morris D.L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett. 2001;165:43–49. doi: 10.1016/S0304-3835(01)00382-2. PubMed DOI

Králová V., Hanušová V., Rudolf E., Čáňová K., Skálová L. Flubendazole induces mitotic catastrophe and senescence in colon cancer cells in vitro. J. Pharm. Pharmacol. 2016;68:208–218. doi: 10.1111/jphp.12503. PubMed DOI

Gao P., Dang C.V., Watson J. Unexpected antitumorigenic effect of fenbendazole when combined with supplementary vitamins. J. Am. Assoc. Lab. Anim. Sci. 2008;47:37–40. PubMed PMC

Kotala V., Uldrijan S., Horky M., Trbusek M., Strnad M., Vojtesek B. Potent induction of wild-type p53-dependent transcription in tumour cells by a synthetic inhibitor of cyclin-dependent kinases. Cell. Mol. Life Sci. 2001;58:1333–1339. doi: 10.1007/PL00000944. PubMed DOI PMC

Desai B.M., Villanueva J., Nguyen T.-T.K., Lioni M., Xiao M., Kong J., Krepler C., Vultur A., Flaherty K.T., Nathanson K.L., et al. The anti-melanoma activity of dinaciclib, a cyclin-dependent kinase inhibitor, is dependent on p53 signaling. PLoS ONE. 2013;8:e59588. doi: 10.1371/journal.pone.0059588. PubMed DOI PMC

Ghasemi F., Black M., Pinto N., Ruicci K.M., Yoo J., Fung K., MacNeil D., Mymryk J.S., Barrett J.W., Nichols A.C., et al. Repurposing albendazole: New potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer. Oncotarget. 2017;8:71512–71519. doi: 10.18632/oncotarget.17292. PubMed DOI PMC

Doudican N., Rodriguez A., Osman I., Orlow S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 2008;6:1308–1315. doi: 10.1158/1541-7786.MCR-07-2159. PubMed DOI

Čáňová K., Rudolf E., Rozkydalová L., Vokurková D. Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol. in Vitro. 2018;46:313–322. doi: 10.1016/j.tiv.2017.10.025. PubMed DOI

Hanušová V., Králová V., Skálová L., Matoušková P. Potential anti-cancer drugs commonly used for other indications. Curr. Cancer Drug Targets. 2015;15:35–52. doi: 10.2174/1568009615666141229152812. PubMed DOI

Patel K., Doudican N.A., Schiff P.B., Orlow S.J. Albendazole sensitizes cancer cells to ionizing radiation. Radiat Oncol. 2011;6:160. doi: 10.1186/1748-717X-6-160. PubMed DOI PMC

Pourgholami M.H., Cai Z.Y., Badar S., Wangoo K., Poruchynsky M.S., Morris D.L. Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole. BMC Cancer. 2010;10:143. doi: 10.1186/1471-2407-10-143. PubMed DOI PMC

Pourgholami M.H., Khachigian L.M., Fahmy R.G., Badar S., Wang L., Chu S.W.L., Morris D.L. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem. Biophys. Res. Commun. 2010;397:729–734. doi: 10.1016/j.bbrc.2010.06.019. PubMed DOI

Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:11926. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC

Soderlind K., Gorodetsky B., Singh A., Bachur N., Miller G., Lown J. Bis-benzimidazole anticancer agents: Targeting human tumour helicases. Anti-Cancer Drug Des. 1999;14:19–36. PubMed

Giannakakou P., Sackett D.L., Ward Y., Webster K.R., Blagosklonny M.V., Fojo T. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2000;2:709–717. doi: 10.1038/35036335. PubMed DOI

Giannakakou P., Nakano M., Nicolaou K.C., O’Brate A., Yu J., Blagosklonny M.V., Greber U.F., Fojo T. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc. Natl. Acad. Sci. USA. 2002;99:10855–10860. doi: 10.1073/pnas.132275599. PubMed DOI PMC

Gupta R.P., Larroquette C.A., Agrawal K.C. Potential radiosensitizing agents. 5. 2-substituted benzimidazole derivatives. J. Med. Chem. 1982;25:1342–1346. doi: 10.1021/jm00353a014. PubMed DOI

Duan Y.-T., Wang Z.-C., Sang Y.-L., Tao X.-X., Zhu H.-L. Exploration of structure-based on imidazole core as antibacterial agents. Curr. Top Med. Chem. 2013;13:3118–3130. doi: 10.2174/15680266113136660222. PubMed DOI

Dogra N., Mukhopadhyay T. Impairment of the ubiquitin-proteasome pathway by methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a potent cytotoxic effect in tumor cells: A novel antiproliferative agent with a potential therapeutic implication. J. Biol. Chem. 2012;287:30625–30640. doi: 10.1074/jbc.M111.324228. PubMed DOI PMC

Valianatos G., Valcikova B., Growkova K., Verlande A., Mlcochova J., Radova L., Stetkova M., Vyhnakova M., Slaby O., Uldrijan S. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS ONE. 2017;12:1. doi: 10.1371/journal.pone.0185801. PubMed DOI PMC

Hammerová J., Uldrijan S., Táborská E., Slaninová I. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J. Dermatol. Sci. 2011;62:22–35. doi: 10.1016/j.jdermsci.2011.01.006. PubMed DOI

Slaninová I., Březinová L., Koubíková L., Slanina J. Dibenzocyclooctadiene lignans overcome drug resistance in lung cancer cells—Study of structure–activity relationship. Toxicology in Vitro. 2009;23:1047–1054. doi: 10.1016/j.tiv.2009.06.008. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CDK9 activity is critical for maintaining MDM4 overexpression in tumor cells

. 2020 Sep 15 ; 11 (9) : 754. [epub] 20200915

Bioactive Molecules and Their Mechanisms of Action

. 2019 Oct 18 ; 24 (20) : . [epub] 20191018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...