A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein

. 2017 ; 12 (10) : e0185801. [epub] 20171003

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28973015

MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells.

Zobrazit více v PubMed

Vousden KH, Lane DP. P53 in Health and Disease. Nat Rev Mol Cell Biol. 2007;8: 275–83. doi: 10.1038/nrm2147 PubMed DOI

Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13: 83–96. doi: 10.1038/nrc3430 PubMed DOI PMC

Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6: 909–23. doi: 10.1038/nrc2012 PubMed DOI

Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med. 2012;18: 1239–1247. doi: 10.1038/nm.2863 PubMed DOI PMC

Laurie NA, Donovan SL, Shih C-S, Zhang J, Mills N, Fuller C, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006;444: 61–6. doi: 10.1038/nature05194 PubMed DOI

McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, et al. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One. 2012;7: 1–11. doi: 10.1371/journal.pone.0042739 PubMed DOI PMC

Lam S, Lodder K, Teunisse AFAS, Rabelink MJWE, Schutte M, Jochemsen AG. Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene. 2010;29: 2415–26. doi: 10.1038/onc.2009.522 PubMed DOI

Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, et al. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 2014;9: 71 doi: 10.1186/1746-1596-9-71 PubMed DOI PMC

Bo MD, Secchiero P, Degan M, Marconi D, Bomben R, Pozzato G, et al. MDM4 (MDMX) is overexpressed in chronic lymphocytic leukaemia (CLL) and marks a subset of p53wild-type CLL with a poor cytotoxic response to Nutlin-3. British Journal of Haematology. 2010;150: 237–239. doi: 10.1111/j.1365-2141.2010.08185.x PubMed DOI

Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, et al. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126: 68–84. doi: 10.1172/JCI82534 PubMed DOI PMC

Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AFAS, Repapi E, et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res. 2012;72: 4074–4084. doi: 10.1158/0008-5472.CAN-12-0215 PubMed DOI

Liu L, Fan L, Fang C, Zou Z, Yang S, Zhang L, et al. S-MDM4 mRNA overexpression indicates a poor prognosis and marks a potential therapeutic target in chronic lymphocytic leukemia. Cancer Sci. 2012;103: 2056–2063. doi: 10.1111/cas.12008 PubMed DOI PMC

Grawenda AM, Moller EK, Lam S, Repapi E, Teunisse AFAS, Alnas GIG, et al. Interaction between p53 mutation and a somatic HDMX biomarker better defines metastatic potential in breast cancer. Cancer Res. 2015;75: 698–708. doi: 10.1158/0008-5472.CAN-14-2637 PubMed DOI

Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11: 597–610. doi: 10.1038/nrg2843 PubMed DOI

Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20: 2202–2207. doi: 10.1101/gad.1444406 PubMed DOI PMC

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435: 834–838. doi: 10.1038/nature03702 PubMed DOI

Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, et al. Tumor suppressor microRNAs: A novel non-coding alliance against cancer. FEBS Lett. Federation of European Biochemical Societies; 2014;588: 2639–2652. doi: 10.1016/j.febslet.2014.03.033 PubMed DOI

Melo S, Villanueva A. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci. 2011;108: 4394–4399. doi: 10.1073/pnas.1014720108 PubMed DOI PMC

Sousa EJ, Graça I, Baptista T, Vieira FQ, Palmeira C, Henrique R, et al. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics. 2013;8: 548–558. doi: 10.4161/epi.24519 PubMed DOI PMC

Kotala V, Uldrijan S, Horky M, Trbusek M, Strnad M, Vojtesek B. Potent induction of wild-type p53-dependent transcription in tumour cells by a synthetic inhibitor of cyclin-dependent kinases. Cell Mol Life Sci. 2001;58: 1333–9. doi: 10.1007/PL00000944 PubMed DOI PMC

Hammerova J, Uldrijan S, Taborská E, Slaninova I. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J Dermatol Sci. 2011;62: 22–35. doi: 10.1016/j.jdermsci.2011.01.006 PubMed DOI

Bartel F, Schulz J, Böhnke A, Blümke K, Kappler M, Bache M, et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer. 2005;117: 469–475. doi: 10.1002/ijc.21206 PubMed DOI

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26: 2363–2367. doi: 10.1093/bioinformatics/btq431 PubMed DOI PMC

R Development Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: URL http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria. 2013.

Smyth GK. Limma: Linear Models for Microarray Data In: Gentleman R., Carey V., Dudoit S., Irizarry WH R., editor. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York, NY: Springer New York; 2005. pp. 397–420. citeulike-article-id:5722720

Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008;26: 933–940. doi: 10.1038/nbt.1481 PubMed DOI PMC

Pajak M, Simpson TI. miRNAtap: microRNA Targets—Aggregated Predictions. R package. 2015.

Maragkakis M, Vergoulis T, Alexiou P, Reczko M, Plomaritou K, Gousis M, et al. DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res. 2011;39 doi: 10.1093/nar/gkr294 PubMed DOI PMC

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5: R1 doi: 10.1186/gb-2003-5-1-r1 PubMed DOI PMC

Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, et al. A genome-wide map of conserved MicroRNA targets in C. elegans. Curr Biol. 2006;16: 460–471. doi: 10.1016/j.cub.2006.01.050 PubMed DOI

Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19: 92–105. doi: 10.1101/gr.082701.108 PubMed DOI PMC

Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43: D146–D152. doi: 10.1093/nar/gku1104 PubMed DOI PMC

Hoffman Y, Pilpel Y, Oren M. MicroRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol. 2014;6: 192–197. doi: 10.1093/jmcb/mju020 PubMed DOI PMC

Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44: D239–D247. doi: 10.1093/nar/gkv1258 PubMed DOI PMC

Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon J-C, Saville MK. p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene. Nature Publishing Group; 2013;32: 1–14. doi: 10.1038/onc.2012.38 PubMed DOI

Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 2006;66: 9502–9508. doi: 10.1158/0008-5472.CAN-05-4271 PubMed DOI

Dutertre M, Sanchez G, De Cian M-C, Barbier J, Dardenne E, Gratadou L, et al. Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol. 2010;17: 1358–1366. doi: 10.1038/nsmb.1912 PubMed DOI

Jacob AG, Singh RK, Comiskey DF, Rouhier MF, Mohammad F, Bebee TW, et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS One. 2014;9 doi: 10.1371/journal.pone.0104444 PubMed DOI PMC

Adams BD, Kasinski AL, Slack FJ. Aberrant Regulation and Function of MicroRNAs in Cancer. Curr Biol. Elsevier Ltd; 2014;24: R762–R776. doi: 10.1016/j.cub.2014.06.043 PubMed DOI PMC

Philippidou D, Schmitt M, Moser D, Margue C, Nazarov P V., Muller A, et al. Signatures of MicroRNAs and selected MicroRNA target genes in human melanoma. Cancer Res. 2010;70: 4163–4173. doi: 10.1158/0008-5472.CAN-09-4512 PubMed DOI

Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 2010;130: 2062–2070. doi: 10.1038/jid.2010.63 PubMed DOI

Völler D, Reinders J, Meister G, Bosserhoff A-K. Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer. 2013;109: 3116–24. doi: 10.1038/bjc.2013.646 PubMed DOI PMC

Smalheiser NR, Zhang H, Dwivedi Y. Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness. Front Psychiatry. 2014;5: 1–6. doi: 10.3389/fpsyt.2014.00001 PubMed DOI PMC

Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366: 707–14. doi: 10.1056/NEJMoa1112302 PubMed DOI PMC

Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380: 358–365. doi: 10.1016/S0140-6736(12)60868-X PubMed DOI

Almalki ZS, Alahmari AK, Guo JJ, Cavanaugh TM. Off-label use of oral fluoroquinolone antibiotics in outpatient settings in the United States, 2006 to 2012. Pharmacoepidemiol Drug Saf. 2016;25: 1042–1051. doi: 10.1002/pds.4021 PubMed DOI

Bourgeois T, Delezoide AL, Zhao W, Guimiot F, Adle-Biassette H, Durand E, et al. Safety study of Ciprofloxacin in newborn mice. Regul Toxicol Pharmacol. 2016;74: 161–169. doi: 10.1016/j.yrtph.2015.11.002 PubMed DOI

Patel K, Goldman JL. Safety Concerns Surrounding Quinolone Use in Children. J Clin Pharmacol. 2016;56: 1060–1075. doi: 10.1002/jcph.715 PubMed DOI PMC

Itoh T, Mitsumori K, Kawaguchi S, Sasaki YF. Genotoxic potential of quinolone antimicrobials in the in vitro comet assay and micronucleus test. Mutat Res—Genet Toxicol Environ Mutagen. 2006;603: 135–144. doi: 10.1016/j.mrgentox.2005.11.003 PubMed DOI

Herbold BA, Brendler-Schwaab SY, Ahr HJ. Ciprofloxacin: In vivo genotoxicity studies. Mutat Res—Genet Toxicol Environ Mutagen. 2001;498: 193–205. doi: 10.1016/S1383-5718(01)00275-3 PubMed DOI

Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res. 2016;5: 707–724. doi: 10.21037/tcr.2016.11.75 PubMed DOI PMC

Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. Double-stranded Breaks Induce Histone H2AX phosphorylation on Serine 139. J Biol Chem. 1998;273: 5858–5868. doi: 10.1074/jbc.273.10.5858 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...