Quantum Chemical Density Matrix Renormalization Group Method Boosted by Machine Learning
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40126916
PubMed Central
PMC11973911
DOI
10.1021/acs.jpclett.5c00207
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The use of machine learning (ML) to refine low-level theoretical calculations to achieve higher accuracy is a promising and actively evolving approach known as Δ-ML. The density matrix renormalization group (DMRG) is a powerful variational approach widely used for studying strongly correlated quantum systems. High computational efficiency can be achieved without compromising accuracy. Here, we demonstrate the potential of a simple ML model to significantly enhance the performance of the quantum chemical DMRG method.
Zobrazit více v PubMed
Ramakrishnan R.; Dral P. O.; Rupp M.; von Lilienfeld O. A. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087–2096. 10.1021/acs.jctc.5b00099. PubMed DOI
Smith J. S.; Nebgen B. T.; Zubatyuk R.; Lubbers N.; Devereux C.; Barros K.; Tretiak S.; Isayev O.; Roitberg A. E. Approaching Coupled Cluster Accuracy with a General-Purpose Neural Network Potential through Transfer Learning. Nat. Commun. 2019, 10, 2903.10.1038/s41467-019-10827-4. PubMed DOI PMC
Nandi A.; Qu C.; Houston P. L.; Conte R.; Bowman J. M. Δ-Machine Learning for Potential Energy Surfaces: A PIP Approach to Bring a DFT-based PES to CCSD(T) Level of Theory. J. Chem. Phys. 2021, 154, 051102.10.1063/5.0038301. PubMed DOI
Bowman J. M.; Qu C.; Conte R.; Nandi A.; Houston P. L.; Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J. Chem. Theory Comput. 2023, 19, 1–17. 10.1021/acs.jctc.2c01034. PubMed DOI
Ruth M.; Gerbig D.; Schreiner P. R. Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies. J. Chem. Theory Comput. 2023, 19, 4912–4920. 10.1021/acs.jctc.3c00274. PubMed DOI
Maier S.; Collins E. M.; Raghavachari K. Quantitative Prediction of Vertical Ionization Potentials from DFT via a Graph-Network-Based Delta Machine Learning Model Incorporating Electronic Descriptors. J. Phys. Chem. A 2023, 127, 3472–3483. 10.1021/acs.jpca.2c08821. PubMed DOI
Collins E. M.; Raghavachari K. Interpretable Graph-Network-Based Machine Learning Models via Molecular Fragmentation. J. Chem. Theory Comput. 2023, 19, 2804–2810. 10.1021/acs.jctc.2c01308. PubMed DOI
Cheng L.; Welborn M.; Christensen A. S.; Miller T. F. III A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability Across Organic Molecules. J. Chem. Phys. 2019, 150, 131103.10.1063/1.5088393. PubMed DOI
Townsend J.; Vogiatzis K. D. Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies. J. Chem. Theory Comput. 2020, 16, 7453–7461. 10.1021/acs.jctc.0c00927. PubMed DOI
Käser S.; Boittier E. D.; Upadhyay M.; Meuwly M. Transfer Learning to CCSD(T): Accurate Anharmonic Frequencies from Machine Learning Models. J. Chem. Theory Comput. 2021, 17, 3687–3699. 10.1021/acs.jctc.1c00249. PubMed DOI
Ruth M.; Gerbig D.; Schreiner P. R. Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning. J. Chem. Theory Comput. 2022, 18, 4846–4855. 10.1021/acs.jctc.2c00501. PubMed DOI
Jones G. M.; Li R. R.; DePrince A. E. III; Vogiatzis K. D. Data-Driven Refinement of Electronic Energies from Two-Electron Reduced-Density-Matrix Theory. J. Phys. Chem. Lett. 2023, 14, 6377–6385. 10.1021/acs.jpclett.3c01382. PubMed DOI
White S. R. Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 1992, 69, 2863–2866. 10.1103/PhysRevLett.69.2863. PubMed DOI
White S. R. Density-Matrix Algorithms for Quantum Renormalization Groups. Phys. Rev. B 1993, 48, 10345–10356. 10.1103/PhysRevB.48.10345. PubMed DOI
Schollwöck U. Rev. Mod. Phys. 2005, 77, 259–315. 10.1103/RevModPhys.77.259. DOI
White S. R.; Martin R. L. Ab Initio Quantum Chemistry using the Density Matrix Renormalization Group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI
Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI
Wouters S.; Van Neck D. The Density Matrix Renormalization Group for Ab Initio Quantum Chemistry. Eur. Phys. J. D 2014, 68, 272.10.1140/epjd/e2014-50500-1. DOI
Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor Product Methods and Entanglement Optimization for Ab Initio Quantum Chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI
Baiardi A.; Reiher M. The Density Matrix Renormalization Group in Chemistry and Molecular Physics: Recent Developments and new Challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI
Schollwöck U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326, 96–192. 10.1016/j.aop.2010.09.012. DOI
Legeza O.; Sólyom J. Optimizing the Density-Matrix Renormalization Group Method Using Quantum Information Entropy. Phys. Rev. B 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI
Legeza O.; Sólyom J. Quantum Data Compression, Quantum Information Generation, and the Density-Matrix Renormalization-Group Method. Phys. Rev. B 2004, 70, 205118.10.1103/PhysRevB.70.205118. DOI
Rissler J.; Noack R. M.; White S. R. Measuring Orbital Interaction Using Quantum Information Theory. Chem. Phys. 2006, 323, 519–531. 10.1016/j.chemphys.2005.10.018. DOI
Legeza O.; Fath G. Accuracy of the Density-Matrix Renormalization-Group Method. Phys. Rev. B 1996, 53, 14349–14358. 10.1103/PhysRevB.53.14349. PubMed DOI
Chan G. K.-L.; Head-Gordon M. Highly Correlated Calculations with a Polynomial Cost Algorithm: A Study of the Density Matrix Renormalization Group. J. Chem. Phys. 2002, 116, 4462–4476. 10.1063/1.1449459. DOI
Olivares-Amaya R.; Hu W.; Nakatani N.; Sharma S.; Yang J.; Chan G. K.-L. The Ab-Initio Density Matrix Renormalization Group in Practice. J. Chem. Phys. 2015, 142, 034102.10.1063/1.4905329. PubMed DOI
Scarselli F.; Gori M.; Tsoi A. C.; Hagenbuchner M.; Monfardini G. The Graph Neural Network Model. IEEE Transactions on Neural Networks 2009, 20, 61–80. 10.1109/TNN.2008.2005605. PubMed DOI
Sanchez-Lengeling B.; Reif E.; Pearce A.; Wiltschko A.. A Gentle Introduction to Graph Neural Networks. Distill 2021, 6.10.23915/distill.00033 DOI
Wahab A.; Pfuderer L.; Paenurk E.; Gershoni-Poranne R. The COMPAS Project: A Computational Database of Polycyclic Aromatic Systems. Phase 1: cata-Condensed Polybenzenoid Hydrocarbons. J. Chem. Inf. Model. 2022, 62, 3704–3713. 10.1021/acs.jcim.2c00503. PubMed DOI
Ortiz R.; Boto R. A.; García-Martínez N.; Sancho-García J. C.; Melle-Franco M.; Fernández-Rossier J. Exchange Rules for Diradical π-Conjugated Hydrocarbons. Nano Lett. 2019, 19, 5991–5997. 10.1021/acs.nanolett.9b01773. PubMed DOI
Song S.; Pinar Solé A.; Matěj A.; Li G.; Stetsovych O.; Soler D.; Yang H.; Telychko M.; Li J.; Kumar M.; Chen Q.; Edalatmanesh S.; Brabec J.; Veis L.; Wu J.; Jelinek P.; Lu J. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. 2024, 16, 938–944. 10.1038/s41557-024-01453-9. PubMed DOI
Sánchez-Grande A.; Urgel J. I.; Veis L.; Edalatmanesh S.; Santos J.; Lauwaet K.; Mutombo P.; Gallego J. M.; Brabec J.; Beran P.; Nachtigallová D.; Miranda R.; Martín N.; Jelínek P.; Écija D. Unravelling the Open-Shell Character of Peripentacene on Au(111). J. Phys. Chem. Lett. 2021, 12, 330–336. 10.1021/acs.jpclett.0c02518. PubMed DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Dunning T. H. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Pipek J.; Mezey P. G. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 1989, 90, 4916–4926. 10.1063/1.456588. DOI
https://github.com/golubp/QC_DMRG_pred, accessed 2024-12-06.
Roemelt M.; Pantazis D. A. Multireference Approaches to Spin-State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. Adv. Theory Simul. 2019, 2, 1800201.10.1002/adts.201800201. DOI