Atomically precise bottom-up synthesis of π-extended [5]triangulene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31360763
PubMed Central
PMC6660211
DOI
10.1126/sciadv.aav7717
PII: aav7717
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The zigzag-edged triangular graphene molecules (ZTGMs) have been predicted to host ferromagnetically coupled edge states with the net spin scaling with the molecular size, which affords large spin tunability crucial for next-generation molecular spintronics. However, the scalable synthesis of large ZTGMs and the direct observation of their edge states have been long-standing challenges because of the molecules' high chemical instability. Here, we report the bottom-up synthesis of π-extended [5]triangulene with atomic precision via surface-assisted cyclodehydrogenation of a rationally designed molecular precursor on metallic surfaces. Atomic force microscopy measurements unambiguously resolve its ZTGM-like skeleton consisting of 15 fused benzene rings, while scanning tunneling spectroscopy measurements reveal edge-localized electronic states. Bolstered by density functional theory calculations, our results show that [5]triangulenes synthesized on Au(111) retain the open-shell π-conjugated character with magnetic ground states.
Department of Physics National Sun Yat sen University Kaohsiung 80424 Taiwan
Institute of Physics Academia Sinica Taipei 11529 Taiwan
Institute of Physics The Czech Academy of Sciences Prague 16200 Czech Republic
Zobrazit více v PubMed
Clar E., Stewart D. G., Aromatic hydrocarbons. LXV. Triangulene derivatives. J. Am. Chem. Soc. 75, 2667–2672 (1953).
Melle-Franco M., When 1 + 1 is odd. Nat. Nanotechnol. 12, 292–293 (2017). PubMed
Morita Y., Suzuki S., Sato K., Takui T., Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 3, 197–204 (2011). PubMed
Lieb E., Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989). PubMed
Potasz P., Güçlü A. D., Hawrylak P., Zero-energy states in triangular and trapezoidal graphene structures. Phys. Rev. B. 81, 033403 (2010).
Fernández-Rossier J., Palacios J. J., Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007). PubMed
Wang W. L., Meng S., Kaxiras E., Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008). PubMed
Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Wang W. L., Yazyev O. V., Meng S., Kaxiras E., Topological frustration in graphene nanoflakes: Magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009). PubMed
Han W., Kawakami R. K., Gmitra M., Fabian J., Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014). PubMed
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L., Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017). PubMed
Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). PubMed
Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C. A., Passerone D., Dumslaff T., Feng X., Müllen K., Fasel R., On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016). PubMed
Chen Y.-C., Cao T., Chen C., Pedramrazi Z., Haberer D., de Oteyza D. G., Fischer F. R., Louie S. G., Crommie M. F., Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015). PubMed
Treier M., Pignedoli C. A., Laino T., Rieger R., Müllen K., Passerone D., Fasel R., Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011). PubMed
Cai J., Pignedoli C. A., Talirz L., Ruffieux P., Söde H., Liang L., Meunier V., Berger R., Li R., Feng X., Müllen K., Fasel R., Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014). PubMed
Nguyen G. D., Tsai H.-Z., Omrani A. A., Marangoni T., Wu M., Rizzo D. J., Rodgers G. F., Cloke R. R., Durr R. A., Sakai Y., Liou F., Aikawa A. S., Chelikowsky J. R., Louie S. G., Fischer F. R., Crommie M. F., Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 12, 1077–1082 (2017). PubMed
Talirz L., Söde H., Cai J., Ruffieux P., Blankenburg S., Jafaar R., Berger R., Feng X., Müllen K., Passerone D., Fasel R., Pignedoli C. A., Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060–2063 (2013). PubMed
Giessibl F. J., Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).
Mohn F., Schuler B., Gross L., Meyer G., Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed
Giessibl F. J., High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).
Gross L., Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011). PubMed
Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 90, 085421 (2014). PubMed
Pavlicěk N., Majzik Z., Collazos S., Meyer G., Peŕez D., Guitiań E., Peña D., Gross L., Generation and characterization of a meta-aryne on Cu and NaCl Surfaces. ACS Nano 11, 10768–10773 (2017). PubMed
Schule B., Fatayer S., Mohn F., Moll N., Pavliček N., Meyer G., Peña D., Gross L., Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016). PubMed
Randić M., Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003). PubMed
Kimouche A., Ervasti M. M., Drost R., Halonen S., Harju A., Joensuu P. M., Sainio J., Liljeroth P., Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 6, 10177 (2015). PubMed PMC
Rizzo D. J., Veber G., Cao T., Bronner C., Chen T., Zhao F., Rodriguez H., Louie S. G., Crommie M. F., Fischer F. R., Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). PubMed
Ezawa M., Metallic graphene nanodisks: Electronic and magnetic properties. Phys. Rev. B 76, 245415 (2007).
Chen C. J., Tunneling matrix elements in three-dimensional space: The derivative rule and the sum rule. Phys. Rev. B 42, 8841–8857 (1990). PubMed
Krejčí O., Hapala P., Ondráček M., Jelínek P., Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017).
Ruffieux P., Cai J., Plumb N. C., Patthey L., Prezzi D., Ferretti A., Molinari E., Feng X., Müllen K., Pignedoli C. A., Fasel R., Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012). PubMed
Zheng Y. J., Huang Y. L., Chen Y., Zhao W., Eda G., Spataru C. D., Zhang W., Chang Y.-H., Li L.-J., Chi D., Quek S. Y., Wee A. T. S., Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 10, 2476–2484 (2016). PubMed
Neaton J. B., Hybertsen M. S., Louie S. G., Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). PubMed
Chen Y.-C., de Oteyza D. G., Pedramrazi Z., Chen C., Fischer F. R., Crommie M. F., Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013). PubMed
Liu Z.-F., Egger D. A., Refaely-Abramson S., Kronik L., Neaton J. B., Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional. J. Chem. Phys. 146, 092326 (2017).
Bartels L., Meyer G., Rieder K.-H., Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Kohn W., Sham L. J., Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). PubMed
Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed
Hohenberg P., Kohn W., Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Krukau A. V., Vydrov O. A., Izmaylov A. F., Scuseria G. E., Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). PubMed
Shishkin M., Kresse G., Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74, 035101 (2006).
Shishkin M., Kresse G., Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007). PubMed
Shishkin M., Marsman M., Kresse G., Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys. Rev. Lett. 99, 246403 (2007). PubMed
Fuchs F., Furthmüller J., Bechstedt F., Shishkin M., Kresse G., Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76, 115109 (2007).
Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010). PubMed
On-Surface Synthesis of a Ferromagnetic Molecular Spin Trimer
Reactivity and Magnetic Coupling of Triangulene Dimers Linked via para-Biphenyl Units
Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes