Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35055243
PubMed Central
PMC8780648
DOI
10.3390/nano12020224
PII: nano12020224
Knihovny.cz E-zdroje
- Klíčová slova
- STM, nanographenes, nanomagnetism, nc-AFM, on-surface synthesis, open-shell character, polycyclic aromatic hydrocarbons,
- Publikační typ
- časopisecké články MeSH
The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.
Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
IMDEA Nanoscience C Faraday 9 Campus de Cantoblanco 28049 Madrid Spain
Institute of Physics of the Czech Academy of Science CZ 16253 Praha Czech Republic
Instituto de Ciencia de Materiales de Madrid CSIC Cantoblanco 28049 Madrid Spain
Zobrazit více v PubMed
Narita A., Wang X.-Y., Feng X., Müllen K. New Advances in Nanographene Chemistry. Chem. Soc. Rev. 2015;44:6616–6643. doi: 10.1039/C5CS00183H. PubMed DOI
Chen L., Hernandez Y., Feng X., Müllen K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 2012;51:7640–7654. doi: 10.1002/anie.201201084. PubMed DOI
Wu J., Pisula W., Müllen K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007;107:718–747. doi: 10.1021/cr068010r. PubMed DOI
Zhi L., Müllen K. A Bottom-up Approach from Molecular Nanographenes to Unconventional Carbon Materials. J. Mater. Chem. 2008;18:1472. doi: 10.1039/b717585j. DOI
Fujii S., Enoki T. Nanographene and Graphene Edges: Electronic Structure and Nanofabrication. Acc. Chem. Res. 2013;46:2202–2210. doi: 10.1021/ar300120y. PubMed DOI
Liu J., Feng X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew. Chem. Int. Ed. 2020;59:23386–23401. doi: 10.1002/anie.202008838. PubMed DOI PMC
Araujo P.T., Terrones M., Dresselhaus M.S. Defects and Impurities in Graphene-like Materials. Mater. Today. 2012;15:98–109. doi: 10.1016/S1369-7021(12)70045-7. DOI
Sun L., Luo Y., Li M., Hu G., Xu Y., Tang T., Wen J., Li X., Wang L. Role of Pyridinic-N for Nitrogen-Doped Graphene Quantum Dots in Oxygen Reaction Reduction. J. Colloid Interface Sci. 2017;508:154–158. doi: 10.1016/j.jcis.2017.08.047. PubMed DOI
Sun Z., Wu J. Open-Shell Polycyclic Aromatic Hydrocarbons. J. Mater. Chem. 2012;22:4151–4160. doi: 10.1039/C1JM14786B. DOI
Morita Y., Suzuki S., Sato K., Takui T. Synthetic Organic Spin Chemistry for Structurally Well-Defined Open-Shell Graphene Fragments. Nat. Chem. 2011;3:197–204. doi: 10.1038/nchem.985. PubMed DOI
Das S., Wu J. Polycyclic Hydrocarbons with an Open-Shell Ground State. Phys. Sci. Rev. 2017;2:253–288. doi: 10.1515/psr-2016-0109. DOI
Gryn’ova G., Coote M.L., Corminboeuf C. Theory and Practice of Uncommon Molecular Electronic Configurations. WIREs Comput. Mol. Sci. 2015;5:440–459. doi: 10.1002/wcms.1233. PubMed DOI PMC
Shen Q., Gao H.-Y., Fuchs H. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today. 2017;13:77–96. doi: 10.1016/j.nantod.2017.02.007. DOI
Urgel J.I., Hayashi H., Di Giovannantonio M., Pignedoli C.A., Mishra S., Deniz O., Yamashita M., Dienel T., Ruffieux P., Yamada H., et al. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139:11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI
Ayani C.G., Pisarra M., Urgel J.I., Jesús Navarro J., Díaz C., Hayashi H., Yamada H., Calleja F., Miranda R., Fasel R., et al. Efficient Photogeneration of Nonacene on Nanostructured Graphene. Nanoscale Horiz. 2021;6:744–750. doi: 10.1039/D1NH00184A. PubMed DOI
Krüger J., García F., Eisenhut F., Skidin D., Alonso J.M., Guitián E., Pérez D., Cuniberti G., Moresco F., Peña D. Decacene: On-Surface Generation. Angew. Chem. 2017;129:12107–12110. doi: 10.1002/ange.201706156. PubMed DOI
Zuzak R., Dorel R., Kolmer M., Szymonski M., Godlewski S., Echavarren A.M. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew. Chem. Int. Ed. 2018;57:10500–10505. doi: 10.1002/anie.201802040. PubMed DOI PMC
Eisenhut F., Kühne T., García F., Fernández S., Guitián E., Pérez D., Trinquier G., Cuniberti G., Joachim C., Peña D., et al. Dodecacene Generated on Surface: Reopening of the Energy Gap. ACS Nano. 2020;14:1011–1017. doi: 10.1021/acsnano.9b08456. PubMed DOI
Urgel J.I., Mishra S., Hayashi H., Wilhelm J., Pignedoli C.A., Giovannantonio M.D., Widmer R., Yamashita M., Hieda N., Ruffieux P., et al. On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character. Nat. Commun. 2019;10:861. doi: 10.1038/s41467-019-08650-y. PubMed DOI PMC
Mishra S., Xu K., Eimre K., Komber H., Ma J., Pignedoli C.A., Fasel R., Feng X., Ruffieux P. Synthesis and Characterization of [7] Triangulene. Nanoscale. 2021;13:1624–1628. doi: 10.1039/D0NR08181G. PubMed DOI
Su J., Telychko M., Song S., Lu J. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem. Int. Ed. 2020;59:7658–7668. doi: 10.1002/anie.201913783. PubMed DOI
Xu X., Di Giovannantonio M., Urgel J.I., Pignedoli C.A., Ruffieux P., Müllen K., Fasel R., Narita A. On-Surface Activation of Benzylic C-H Bonds for the Synthesis of Pentagon-Fused Graphene Nanoribbons. Nano Res. 2021;14:4754–4759. doi: 10.1007/s12274-021-3419-2. DOI
Mishra S., Lohr T.G., Pignedoli C.A., Liu J., Berger R., Urgel J.I., Müllen K., Feng X., Ruffieux P., Fasel R. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano. 2018;12:11917–11927. doi: 10.1021/acsnano.8b07225. PubMed DOI
Lohr T.G., Urgel J.I., Eimre K., Liu J., Di Giovannantonio M., Mishra S., Berger R., Ruffieux P., Pignedoli C.A., Fasel R., et al. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J. Am. Chem. Soc. 2020;142:13565–13572. doi: 10.1021/jacs.0c05668. PubMed DOI
Di Giovannantonio M., Urgel J.I., Beser U., Yakutovich A.V., Wilhelm J., Pignedoli C.A., Ruffieux P., Narita A., Müllen K., Fasel R. On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. J. Am. Chem. Soc. 2018;140:3532–3536. doi: 10.1021/jacs.8b00587. PubMed DOI
Di Giovannantonio M., Eimre K., Yakutovich A.V., Chen Q., Mishra S., Urgel J.I., Pignedoli C.A., Ruffieux P., Müllen K., Narita A., et al. On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1-b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019;141:12346–12354. doi: 10.1021/jacs.9b05335. PubMed DOI
Di Giovannantonio M., Chen Q., Urgel J.I., Ruffieux P., Pignedoli C.A., Müllen K., Narita A., Fasel R. On-Surface Synthesis of Oligo(Indenoindene) J. Am. Chem. Soc. 2020;142:12925–12929. doi: 10.1021/jacs.0c05701. PubMed DOI
Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C.A., Müllen K., Liljeroth P., Ruffieux P., et al. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15:22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI
Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C.A., Müllen K., Fasel R., Feng X., et al. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141:10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI
Mishra S., Beyer D., Berger R., Liu J., Groening O., Urgel J.I., Müllen K., Ruffieux P., Feng X., Fasel R. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020;142:1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI
Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C., Fasel R., Feng X., et al. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem. Int. Ed. 2020;59:12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC
Mishra S., Melidonie J., Eimre K., Obermann S., Gröning O., Pignedoli C.A., Ruffieux P., Feng X., Fasel R. On-Surface Synthesis of Super-Heptazethrene. Chem. Commun. 2020;56:7467–7470. doi: 10.1039/D0CC02513E. PubMed DOI
Mishra S., Yao X., Chen Q., Eimre K., Gröning O., Ortiz R., Di Giovannantonio M., Sancho-García J.C., Fernández-Rossier J., Pignedoli C.A., et al. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021;13:581–586. doi: 10.1038/s41557-021-00678-2. PubMed DOI
Gröning O., Wang S., Yao X., Pignedoli C.A., Borin Barin G., Daniels C., Cupo A., Meunier V., Feng X., Narita A., et al. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature. 2018;560:209–213. doi: 10.1038/s41586-018-0375-9. PubMed DOI
Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C.A., Passerone D., et al. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature. 2016;531:489–492. doi: 10.1038/nature17151. PubMed DOI
Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J.I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI
Zheng Y., Li C., Xu C., Beyer D., Yue X., Zhao Y., Wang G., Guan D., Li Y., Zheng H., et al. Designer Spin Order in Diradical Nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC
Giessibl F.J. Atomic Resolution on Si(111)-(7 × 7) by Noncontact Atomic Force Microscopy with a Force Sensor Based on a Quartz Tuning Fork. Appl. Phys. Lett. 2000;76:1470–1472. doi: 10.1063/1.126067. DOI
Bartels L., Meyer G., Rieder K.-H., Velic D., Knoesel E., Hotzel A., Wolf M., Ertl G. Dynamics of Electron-Induced Manipulation of Individual CO Molecules on Cu(111) Phys. Rev. Lett. 1998;80:2004–2007. doi: 10.1103/PhysRevLett.80.2004. DOI
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Horcas I., Fernández R., Gómez-Rodríguez J.M., Colchero J., Gómez-Herrero J., Baro A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI
Zhao Y., Jiang K., Li C., Liu Y., Xu C., Zheng W., Guan D., Li Y., Zheng H., Liu C., et al. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020;142:18532–18540. doi: 10.1021/jacs.0c07791. PubMed DOI
Eisenhut F., Lehmann T., Viertel A., Skidin D., Krüger J., Nikipar S., Ryndyk D.A., Joachim C., Hecht S., Moresco F., et al. On-Surface Annulation Reaction Cascade for the Selective Synthesis of Diindenopyrene. ACS Nano. 2017;11:12419–12425. doi: 10.1021/acsnano.7b06459. PubMed DOI
Liu J., Mishra S., Pignedoli C.A., Passerone D., Urgel J.I., Fabrizio A., Lohr T.G., Ma J., Komber H., Baumgarten M., et al. Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. J. Am. Chem. Soc. 2019;141:12011–12020. doi: 10.1021/jacs.9b04718. PubMed DOI
Mallada B., de la Torre B., Mendieta-Moreno J.I., Nachtigallová D., Matěj A., Matoušek M., Mutombo P., Brabec J., Veis L., Cadart T., et al. On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four- to Eight-Membered Rings. J. Am. Chem. Soc. 2021;143:14694–14702. doi: 10.1021/jacs.1c06168. PubMed DOI
Qiu Z., Sun Q., Wang S., Barin G.B., Dumslaff B., Ruffieux P., Müllen K., Narita A., Fasel R. Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Org. Mater. 2021;03:128–133. doi: 10.1055/s-0041-1726295. DOI
Hapala P., Kichin G., Wagner C., Tautz F.S., Temirov R., Jelínek P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI
Goto K., Kubo T., Yamamoto K., Nakasuji K., Sato K., Shiomi D., Takui T., Kubota M., Kobayashi T., Yakusi K., et al. A Stable Neutral Hydrocarbon Radical: Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-Tert-Butyl-Phenalenyl. J. Am. Chem. Soc. 1999;121:1619–1620. doi: 10.1021/ja9836242. DOI
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D.J., Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z.-Q., Qiu Z., et al. Atomically Precise Bottom-up Synthesis of π-Extended [5] Triangulene. Sci. Adv. 2019;5:eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC
Krejčí O., Hapala P., Ondráček M., Jelínek P. Principles and Simulations of High-Resolution STM Imaging with a Flexible Tip Apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI
Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Becke A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993;98:1372–1377. doi: 10.1063/1.464304. DOI
Ternes M., Heinrich A.J., Schneider W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys. Condens. Matter. 2008;21:053001. doi: 10.1088/0953-8984/21/5/053001. PubMed DOI
Ternes M. Probing Magnetic Excitations and Correlations in Single and Coupled Spin Systems with Scanning Tunneling Spectroscopy. Prog. Surf. Sci. 2017;92:83–115. doi: 10.1016/j.progsurf.2017.01.001. DOI
Sánchez-Grande A., Urgel J.I., Cahlík A., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mutombo P., Nachtigallová D., Nieman R., et al. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem. Int. Ed. 2020;59:17594–17599. doi: 10.1002/anie.202006276. PubMed DOI PMC