Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes

. 2022 Jan 11 ; 12 (2) : . [epub] 20220111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055243

The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.

Zobrazit více v PubMed

Narita A., Wang X.-Y., Feng X., Müllen K. New Advances in Nanographene Chemistry. Chem. Soc. Rev. 2015;44:6616–6643. doi: 10.1039/C5CS00183H. PubMed DOI

Chen L., Hernandez Y., Feng X., Müllen K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 2012;51:7640–7654. doi: 10.1002/anie.201201084. PubMed DOI

Wu J., Pisula W., Müllen K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007;107:718–747. doi: 10.1021/cr068010r. PubMed DOI

Zhi L., Müllen K. A Bottom-up Approach from Molecular Nanographenes to Unconventional Carbon Materials. J. Mater. Chem. 2008;18:1472. doi: 10.1039/b717585j. DOI

Fujii S., Enoki T. Nanographene and Graphene Edges: Electronic Structure and Nanofabrication. Acc. Chem. Res. 2013;46:2202–2210. doi: 10.1021/ar300120y. PubMed DOI

Liu J., Feng X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew. Chem. Int. Ed. 2020;59:23386–23401. doi: 10.1002/anie.202008838. PubMed DOI PMC

Araujo P.T., Terrones M., Dresselhaus M.S. Defects and Impurities in Graphene-like Materials. Mater. Today. 2012;15:98–109. doi: 10.1016/S1369-7021(12)70045-7. DOI

Sun L., Luo Y., Li M., Hu G., Xu Y., Tang T., Wen J., Li X., Wang L. Role of Pyridinic-N for Nitrogen-Doped Graphene Quantum Dots in Oxygen Reaction Reduction. J. Colloid Interface Sci. 2017;508:154–158. doi: 10.1016/j.jcis.2017.08.047. PubMed DOI

Sun Z., Wu J. Open-Shell Polycyclic Aromatic Hydrocarbons. J. Mater. Chem. 2012;22:4151–4160. doi: 10.1039/C1JM14786B. DOI

Morita Y., Suzuki S., Sato K., Takui T. Synthetic Organic Spin Chemistry for Structurally Well-Defined Open-Shell Graphene Fragments. Nat. Chem. 2011;3:197–204. doi: 10.1038/nchem.985. PubMed DOI

Das S., Wu J. Polycyclic Hydrocarbons with an Open-Shell Ground State. Phys. Sci. Rev. 2017;2:253–288. doi: 10.1515/psr-2016-0109. DOI

Gryn’ova G., Coote M.L., Corminboeuf C. Theory and Practice of Uncommon Molecular Electronic Configurations. WIREs Comput. Mol. Sci. 2015;5:440–459. doi: 10.1002/wcms.1233. PubMed DOI PMC

Shen Q., Gao H.-Y., Fuchs H. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today. 2017;13:77–96. doi: 10.1016/j.nantod.2017.02.007. DOI

Urgel J.I., Hayashi H., Di Giovannantonio M., Pignedoli C.A., Mishra S., Deniz O., Yamashita M., Dienel T., Ruffieux P., Yamada H., et al. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139:11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI

Ayani C.G., Pisarra M., Urgel J.I., Jesús Navarro J., Díaz C., Hayashi H., Yamada H., Calleja F., Miranda R., Fasel R., et al. Efficient Photogeneration of Nonacene on Nanostructured Graphene. Nanoscale Horiz. 2021;6:744–750. doi: 10.1039/D1NH00184A. PubMed DOI

Krüger J., García F., Eisenhut F., Skidin D., Alonso J.M., Guitián E., Pérez D., Cuniberti G., Moresco F., Peña D. Decacene: On-Surface Generation. Angew. Chem. 2017;129:12107–12110. doi: 10.1002/ange.201706156. PubMed DOI

Zuzak R., Dorel R., Kolmer M., Szymonski M., Godlewski S., Echavarren A.M. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew. Chem. Int. Ed. 2018;57:10500–10505. doi: 10.1002/anie.201802040. PubMed DOI PMC

Eisenhut F., Kühne T., García F., Fernández S., Guitián E., Pérez D., Trinquier G., Cuniberti G., Joachim C., Peña D., et al. Dodecacene Generated on Surface: Reopening of the Energy Gap. ACS Nano. 2020;14:1011–1017. doi: 10.1021/acsnano.9b08456. PubMed DOI

Urgel J.I., Mishra S., Hayashi H., Wilhelm J., Pignedoli C.A., Giovannantonio M.D., Widmer R., Yamashita M., Hieda N., Ruffieux P., et al. On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character. Nat. Commun. 2019;10:861. doi: 10.1038/s41467-019-08650-y. PubMed DOI PMC

Mishra S., Xu K., Eimre K., Komber H., Ma J., Pignedoli C.A., Fasel R., Feng X., Ruffieux P. Synthesis and Characterization of [7] Triangulene. Nanoscale. 2021;13:1624–1628. doi: 10.1039/D0NR08181G. PubMed DOI

Su J., Telychko M., Song S., Lu J. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem. Int. Ed. 2020;59:7658–7668. doi: 10.1002/anie.201913783. PubMed DOI

Xu X., Di Giovannantonio M., Urgel J.I., Pignedoli C.A., Ruffieux P., Müllen K., Fasel R., Narita A. On-Surface Activation of Benzylic C-H Bonds for the Synthesis of Pentagon-Fused Graphene Nanoribbons. Nano Res. 2021;14:4754–4759. doi: 10.1007/s12274-021-3419-2. DOI

Mishra S., Lohr T.G., Pignedoli C.A., Liu J., Berger R., Urgel J.I., Müllen K., Feng X., Ruffieux P., Fasel R. Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano. 2018;12:11917–11927. doi: 10.1021/acsnano.8b07225. PubMed DOI

Lohr T.G., Urgel J.I., Eimre K., Liu J., Di Giovannantonio M., Mishra S., Berger R., Ruffieux P., Pignedoli C.A., Fasel R., et al. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J. Am. Chem. Soc. 2020;142:13565–13572. doi: 10.1021/jacs.0c05668. PubMed DOI

Di Giovannantonio M., Urgel J.I., Beser U., Yakutovich A.V., Wilhelm J., Pignedoli C.A., Ruffieux P., Narita A., Müllen K., Fasel R. On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. J. Am. Chem. Soc. 2018;140:3532–3536. doi: 10.1021/jacs.8b00587. PubMed DOI

Di Giovannantonio M., Eimre K., Yakutovich A.V., Chen Q., Mishra S., Urgel J.I., Pignedoli C.A., Ruffieux P., Müllen K., Narita A., et al. On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1-b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019;141:12346–12354. doi: 10.1021/jacs.9b05335. PubMed DOI

Di Giovannantonio M., Chen Q., Urgel J.I., Ruffieux P., Pignedoli C.A., Müllen K., Narita A., Fasel R. On-Surface Synthesis of Oligo(Indenoindene) J. Am. Chem. Soc. 2020;142:12925–12929. doi: 10.1021/jacs.0c05701. PubMed DOI

Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C.A., Müllen K., Liljeroth P., Ruffieux P., et al. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15:22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI

Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C.A., Müllen K., Fasel R., Feng X., et al. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141:10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI

Mishra S., Beyer D., Berger R., Liu J., Groening O., Urgel J.I., Müllen K., Ruffieux P., Feng X., Fasel R. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020;142:1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI

Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C., Fasel R., Feng X., et al. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem. Int. Ed. 2020;59:12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC

Mishra S., Melidonie J., Eimre K., Obermann S., Gröning O., Pignedoli C.A., Ruffieux P., Feng X., Fasel R. On-Surface Synthesis of Super-Heptazethrene. Chem. Commun. 2020;56:7467–7470. doi: 10.1039/D0CC02513E. PubMed DOI

Mishra S., Yao X., Chen Q., Eimre K., Gröning O., Ortiz R., Di Giovannantonio M., Sancho-García J.C., Fernández-Rossier J., Pignedoli C.A., et al. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021;13:581–586. doi: 10.1038/s41557-021-00678-2. PubMed DOI

Gröning O., Wang S., Yao X., Pignedoli C.A., Borin Barin G., Daniels C., Cupo A., Meunier V., Feng X., Narita A., et al. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature. 2018;560:209–213. doi: 10.1038/s41586-018-0375-9. PubMed DOI

Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C.A., Passerone D., et al. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature. 2016;531:489–492. doi: 10.1038/nature17151. PubMed DOI

Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J.I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI

Zheng Y., Li C., Xu C., Beyer D., Yue X., Zhao Y., Wang G., Guan D., Li Y., Zheng H., et al. Designer Spin Order in Diradical Nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC

Giessibl F.J. Atomic Resolution on Si(111)-(7 × 7) by Noncontact Atomic Force Microscopy with a Force Sensor Based on a Quartz Tuning Fork. Appl. Phys. Lett. 2000;76:1470–1472. doi: 10.1063/1.126067. DOI

Bartels L., Meyer G., Rieder K.-H., Velic D., Knoesel E., Hotzel A., Wolf M., Ertl G. Dynamics of Electron-Induced Manipulation of Individual CO Molecules on Cu(111) Phys. Rev. Lett. 1998;80:2004–2007. doi: 10.1103/PhysRevLett.80.2004. DOI

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Horcas I., Fernández R., Gómez-Rodríguez J.M., Colchero J., Gómez-Herrero J., Baro A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI

Zhao Y., Jiang K., Li C., Liu Y., Xu C., Zheng W., Guan D., Li Y., Zheng H., Liu C., et al. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020;142:18532–18540. doi: 10.1021/jacs.0c07791. PubMed DOI

Eisenhut F., Lehmann T., Viertel A., Skidin D., Krüger J., Nikipar S., Ryndyk D.A., Joachim C., Hecht S., Moresco F., et al. On-Surface Annulation Reaction Cascade for the Selective Synthesis of Diindenopyrene. ACS Nano. 2017;11:12419–12425. doi: 10.1021/acsnano.7b06459. PubMed DOI

Liu J., Mishra S., Pignedoli C.A., Passerone D., Urgel J.I., Fabrizio A., Lohr T.G., Ma J., Komber H., Baumgarten M., et al. Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. J. Am. Chem. Soc. 2019;141:12011–12020. doi: 10.1021/jacs.9b04718. PubMed DOI

Mallada B., de la Torre B., Mendieta-Moreno J.I., Nachtigallová D., Matěj A., Matoušek M., Mutombo P., Brabec J., Veis L., Cadart T., et al. On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four- to Eight-Membered Rings. J. Am. Chem. Soc. 2021;143:14694–14702. doi: 10.1021/jacs.1c06168. PubMed DOI

Qiu Z., Sun Q., Wang S., Barin G.B., Dumslaff B., Ruffieux P., Müllen K., Narita A., Fasel R. Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Org. Mater. 2021;03:128–133. doi: 10.1055/s-0041-1726295. DOI

Hapala P., Kichin G., Wagner C., Tautz F.S., Temirov R., Jelínek P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI

Goto K., Kubo T., Yamamoto K., Nakasuji K., Sato K., Shiomi D., Takui T., Kubota M., Kobayashi T., Yakusi K., et al. A Stable Neutral Hydrocarbon Radical:  Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-Tert-Butyl-Phenalenyl. J. Am. Chem. Soc. 1999;121:1619–1620. doi: 10.1021/ja9836242. DOI

Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D.J., Gross L. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z.-Q., Qiu Z., et al. Atomically Precise Bottom-up Synthesis of π-Extended [5] Triangulene. Sci. Adv. 2019;5:eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC

Krejčí O., Hapala P., Ondráček M., Jelínek P. Principles and Simulations of High-Resolution STM Imaging with a Flexible Tip Apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI

Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI

Becke A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993;98:1372–1377. doi: 10.1063/1.464304. DOI

Ternes M., Heinrich A.J., Schneider W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys. Condens. Matter. 2008;21:053001. doi: 10.1088/0953-8984/21/5/053001. PubMed DOI

Ternes M. Probing Magnetic Excitations and Correlations in Single and Coupled Spin Systems with Scanning Tunneling Spectroscopy. Prog. Surf. Sci. 2017;92:83–115. doi: 10.1016/j.progsurf.2017.01.001. DOI

Sánchez-Grande A., Urgel J.I., Cahlík A., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mutombo P., Nachtigallová D., Nieman R., et al. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem. Int. Ed. 2020;59:17594–17599. doi: 10.1002/anie.202006276. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...