Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
project QUIMTRONIC-CM (Y2018/NMT-4783)
Comunidad de Madrid
projects MAD2D, NanoMagCost
Comunidad de Madrid
ELECNANO (nº 766555)
European Research Council - International
PubMed
32592432
PubMed Central
PMC7540677
DOI
10.1002/anie.202006276
Knihovny.cz E-resources
- Keywords
- cumulenes, diradical polymers, nc-AFM, scanning tunneling microscopy, surface chemistry,
- Publication type
- Journal Article MeSH
We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.
Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
IMDEA Nanoscience C Faraday 9 Campus de Cantoblanco 28049 Madrid Spain
Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
School of Pharmaceutical Sciences and Technology Tianjin University Tianjin 300072 P R China
See more in PubMed
Guo X., Baumgarten M., Müllen K., Prog. Polym. Sci. 2013, 38, 1832–1908.
Singh T. B., Sariciftci N. S., Annu. Rev. Mater. Res. 2006, 36, 199–230.
Facchetti A., Chem. Mater. 2011, 23, 733–758.
Farchioni R., Grosso G., Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, Springer Science & Business Media, Cham, 2013.
Li X., Cao F., Yu D., Chen J., Sun Z., Shen Y., Zhu Y., Wang L., Wei Y., Wu Y., Zeng H., Small 2017, 13, 1603996. PubMed
Manna L., Milliron D. J., Meisel A., Scher E. C., Alivisatos A. P., Nat. Mater. 2003, 2, 382–385. PubMed
Song J., Li J., Li X., Xu L., Dong Y., Zeng H., Adv. Mater. 2015, 27, 7162–7167. PubMed
Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R., Nature 2010, 466, 470–473. PubMed
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science 2004, 306, 666–669. PubMed
Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Phys. Rev. B 1996, 54, 17954–17961. PubMed
Enoki T., Ando T., Physics and Chemistry of Graphene: Graphene to Nanographene, CRC, Boca Raton, 2013.
Yazyev O. V., Rep. Prog. Phys. 2010, 73, 056501.
Lahti P. M., Magnetic Properties of Organic Materials, CRC, Boca Raton, 1999.
Uji S., Shinagawa H., Terashima T., Yakabe T., Terai Y., Tokumoto M., Kobayashi A., Tanaka H., Kobayashi H., Nature 2001, 410, 908–910. PubMed
Prinz G. A., Science 1998, 282, 1660–1663. PubMed
Janoschka T., Hager M. D., Schubert U. S., Adv. Mater. 2012, 24, 6397–6409. PubMed
Nevers D. R., Brushett F. R., Wheeler D. R., J. Power Sources 2017, 352, 226–244.
Zhang K., Monteiro M. J., Jia Z., Polym. Chem. 2016, 7, 5589–5614.
Wang X.-Y., Yao X., Müllen K., Sci. China Chem. 2019, 62, 1099–1144.
Rieger R., Müllen K., J. Phys. Org. Chem. 2010, 23, 315–325.
Sun Z., Wu J., J. Mater. Chem. 2012, 22, 4151–4160.
Narita A., Wang X.-Y., Feng X., Müllen K., Chem. Soc. Rev. 2015, 44, 6616–6643. PubMed
Chen L., Hernandez Y., Feng X., Müllen K., Angew. Chem. Int. Ed. 2012, 51, 7640–7654; PubMed
Angew. Chem. 2012, 124, 7758–7773.
Das S., Wu J., Phys. Sci. Rev. 2017, 2, 20160109.
Zeng W., Phan H., Herng T. S., Gopalakrishna T. Y., Aratani N., Zeng Z., Yamada H., Ding J., Wu J., Chem 2017, 2, 81–92.
Di Giovannantonio M., Eimre K., Yakutovich A. V., Chen Q., Mishra S., Urgel J. I., Pignedoli C. A., Ruffieux P., Müllen K., Narita A., Fasel R., J. Am. Chem. Soc. 2019, 141, 12346–12354. PubMed
Jiang D., Sumpter B. G., Dai S., J. Chem. Phys. 2007, 126, 134701. PubMed
Liu J., Ravat P., Wagner M., Baumgarten M., Feng X., Müllen K., Angew. Chem. Int. Ed. 2015, 54, 12442–12446; PubMed
Angew. Chem. 2015, 127, 12619–12623.
Rogers C., Chen C., Pedramrazi Z., Omrani A. A., Tsai H.-Z., Jung H. S., Lin S., Crommie M. F., Fischer F. R., Angew. Chem. Int. Ed. 2015, 54, 15143–15146; PubMed
Angew. Chem. 2015, 127, 15358–15361.
Kintigh J. T., Hodgson J. L., Singh A., Pramanik C., Larson A. M., Zhou L., Briggs J. B., Noll B. C., Kheirkhahi E., Pohl K., McGruer N. E., Miller G. P., J. Phys. Chem. C 2014, 118, 26955–26963.
Xiao S., Kang S. J., Wu Y., Ahn S., Kim J. B., Loo Y.-L., Siegrist T., Steigerwald M. L., Li H., Nuckolls C., Chem. Sci. 2013, 4, 2018–2023.
Weiss C., Wagner C., Kleimann C., Rohlfing M., Tautz F. S., Temirov R., Phys. Rev. Lett. 2010, 105, 086103. PubMed
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed
Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitián E., Peña D., Gourdon A., Meyer G., Science 2012, 337, 1326–1329. PubMed
Sánchez-Grande A., de la Torre B., Santos J., Cirera B., Lauwaet K., Chutora T., Edalatmanesh S., Mutombo P., Rosen J., Zbořil R., Miranda R., Björk J., Jelínek P., Martín N., Écija D., Angew. Chem. Int. Ed. 2019, 58, 6559–6563; PubMed PMC
Angew. Chem. 2019, 131, 6631–6635.
de Oteyza D. G., Gorman P., Chen Y.-C., Wickenburg S., Riss A., Mowbray D. J., Etkin G., Pedramrazi Z., Tsai H.-Z., Rubio A., Crommie M. F., Fischer F. R., Science 2013, 340, 1434–1437. PubMed
Pavliček N., Gawel P., Kohn D. R., Majzik Z., Xiong Y., Meyer G., Anderson H. L., Gross L., Nat. Chem. 2018, 10, 853–858. PubMed PMC
Sun Q., Tran B. V., Cai L., Ma H., Yu X., Yuan C., Stöhr M., Xu W., Angew. Chem. Int. Ed. 2017, 56, 12165–12169; PubMed
Angew. Chem. 2017, 129, 12333–12337.
Cirera B., Sánchez-Grande A., de la Torre B., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mallada B., Zbořil R., Miranda R., Gröning O., Jelínek P., Martín N., Ecija D., Nat. Nanotechnol. 2020, 15, 437–443. PubMed
Urgel J. I., Di Giovannantonio M., Eimre K., Lohr T. G., Liu J., Mishra S., Sun Q., Kinikar A., Widmer R., Stolz S., Bommert M., Berger R., Ruffieux P., Pignedoli C. A., Müllen K., Feng X., Fasel R., Angew. Chem. Int. Ed. 2020, 59, 13281—13287; PubMed PMC
Angew. Chem. 2020, 132, 13383–13389.
Clar E., The Aromatic Sextet, Wiley, New York, 1972.
Di Giovannantonio M., Deniz O., Urgel J. I., Widmer R., Dienel T., Stolz S., Sánchez-Sánchez C., Muntwiler M., Dumslaff T., Berger R., Narita A., Feng X., Müllen K., Ruffieux P., Fasel R., ACS Nano 2018, 12, 74–81. PubMed
Krejčí O., Hapala P., Ondráček M., Jelínek P., Phys. Rev. B 2017, 95, 045407.
Kondo J., Prog. Theor. Phys. 1964, 32, 37–49.
Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M., Comput. Phys. Commun. 2009, 180, 2175–2196.
Horn S., Plasser F., Müller T., Libisch F., Burgdörfer J., Lischka H., Theor. Chem. Acc. 2014, 133, 1511.
Heinrich A. J., Gupta J. A., Lutz C. P., Eigler D. M., Science 2004, 306, 466–469. PubMed
Li J., Sanz S., Corso M., Choi D. J., Peña D., Frederiksen T., Pascual J. I., Nat. Commun. 2019, 10, 1–7. PubMed PMC
Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R., Nat. Nanotechnol. 2020, 15, 22–28. PubMed
Ortiz R., Boto R. A., García-Martínez N., Sancho-García J. C., Melle-Franco M., Fernández-Rossier J., Nano Lett. 2019, 19, 5991–5997. PubMed
Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C., Fasel R., Feng X., Ruffieux P., Angew. Chem. Int. Ed. 2020, 59, 12041–12047; PubMed PMC
Angew. Chem. 2020, 132, 12139–12145.
Atomically Precise Control of Topological State Hybridization in Conjugated Polymers
On-Surface Synthesis of Organolanthanide Sandwich Complexes
Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers
Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes