• This record comes from PubMed

Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface

. 2020 Sep 28 ; 59 (40) : 17594-17599. [epub] 20200811

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
project QUIMTRONIC-CM (Y2018/NMT-4783) Comunidad de Madrid
projects MAD2D, NanoMagCost Comunidad de Madrid
ELECNANO (nº 766555) European Research Council - International

We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.

See more in PubMed

Guo X., Baumgarten M., Müllen K., Prog. Polym. Sci. 2013, 38, 1832–1908.

Singh T. B., Sariciftci N. S., Annu. Rev. Mater. Res. 2006, 36, 199–230.

Facchetti A., Chem. Mater. 2011, 23, 733–758.

Farchioni R., Grosso G., Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, Springer Science & Business Media, Cham, 2013.

Li X., Cao F., Yu D., Chen J., Sun Z., Shen Y., Zhu Y., Wang L., Wei Y., Wu Y., Zeng H., Small 2017, 13, 1603996. PubMed

Manna L., Milliron D. J., Meisel A., Scher E. C., Alivisatos A. P., Nat. Mater. 2003, 2, 382–385. PubMed

Song J., Li J., Li X., Xu L., Dong Y., Zeng H., Adv. Mater. 2015, 27, 7162–7167. PubMed

Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R., Nature 2010, 466, 470–473. PubMed

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science 2004, 306, 666–669. PubMed

Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Phys. Rev. B 1996, 54, 17954–17961. PubMed

Enoki T., Ando T., Physics and Chemistry of Graphene: Graphene to Nanographene, CRC, Boca Raton, 2013.

Yazyev O. V., Rep. Prog. Phys. 2010, 73, 056501.

Lahti P. M., Magnetic Properties of Organic Materials, CRC, Boca Raton, 1999.

Uji S., Shinagawa H., Terashima T., Yakabe T., Terai Y., Tokumoto M., Kobayashi A., Tanaka H., Kobayashi H., Nature 2001, 410, 908–910. PubMed

Prinz G. A., Science 1998, 282, 1660–1663. PubMed

Janoschka T., Hager M. D., Schubert U. S., Adv. Mater. 2012, 24, 6397–6409. PubMed

Nevers D. R., Brushett F. R., Wheeler D. R., J. Power Sources 2017, 352, 226–244.

Zhang K., Monteiro M. J., Jia Z., Polym. Chem. 2016, 7, 5589–5614.

Wang X.-Y., Yao X., Müllen K., Sci. China Chem. 2019, 62, 1099–1144.

Rieger R., Müllen K., J. Phys. Org. Chem. 2010, 23, 315–325.

Sun Z., Wu J., J. Mater. Chem. 2012, 22, 4151–4160.

Narita A., Wang X.-Y., Feng X., Müllen K., Chem. Soc. Rev. 2015, 44, 6616–6643. PubMed

Chen L., Hernandez Y., Feng X., Müllen K., Angew. Chem. Int. Ed. 2012, 51, 7640–7654; PubMed

Angew. Chem. 2012, 124, 7758–7773.

Das S., Wu J., Phys. Sci. Rev. 2017, 2, 20160109.

Zeng W., Phan H., Herng T. S., Gopalakrishna T. Y., Aratani N., Zeng Z., Yamada H., Ding J., Wu J., Chem 2017, 2, 81–92.

Di Giovannantonio M., Eimre K., Yakutovich A. V., Chen Q., Mishra S., Urgel J. I., Pignedoli C. A., Ruffieux P., Müllen K., Narita A., Fasel R., J. Am. Chem. Soc. 2019, 141, 12346–12354. PubMed

Jiang D., Sumpter B. G., Dai S., J. Chem. Phys. 2007, 126, 134701. PubMed

Liu J., Ravat P., Wagner M., Baumgarten M., Feng X., Müllen K., Angew. Chem. Int. Ed. 2015, 54, 12442–12446; PubMed

Angew. Chem. 2015, 127, 12619–12623.

Rogers C., Chen C., Pedramrazi Z., Omrani A. A., Tsai H.-Z., Jung H. S., Lin S., Crommie M. F., Fischer F. R., Angew. Chem. Int. Ed. 2015, 54, 15143–15146; PubMed

Angew. Chem. 2015, 127, 15358–15361.

Kintigh J. T., Hodgson J. L., Singh A., Pramanik C., Larson A. M., Zhou L., Briggs J. B., Noll B. C., Kheirkhahi E., Pohl K., McGruer N. E., Miller G. P., J. Phys. Chem. C 2014, 118, 26955–26963.

Xiao S., Kang S. J., Wu Y., Ahn S., Kim J. B., Loo Y.-L., Siegrist T., Steigerwald M. L., Li H., Nuckolls C., Chem. Sci. 2013, 4, 2018–2023.

Weiss C., Wagner C., Kleimann C., Rohlfing M., Tautz F. S., Temirov R., Phys. Rev. Lett. 2010, 105, 086103. PubMed

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed

Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitián E., Peña D., Gourdon A., Meyer G., Science 2012, 337, 1326–1329. PubMed

Sánchez-Grande A., de la Torre B., Santos J., Cirera B., Lauwaet K., Chutora T., Edalatmanesh S., Mutombo P., Rosen J., Zbořil R., Miranda R., Björk J., Jelínek P., Martín N., Écija D., Angew. Chem. Int. Ed. 2019, 58, 6559–6563; PubMed PMC

Angew. Chem. 2019, 131, 6631–6635.

de Oteyza D. G., Gorman P., Chen Y.-C., Wickenburg S., Riss A., Mowbray D. J., Etkin G., Pedramrazi Z., Tsai H.-Z., Rubio A., Crommie M. F., Fischer F. R., Science 2013, 340, 1434–1437. PubMed

Pavliček N., Gawel P., Kohn D. R., Majzik Z., Xiong Y., Meyer G., Anderson H. L., Gross L., Nat. Chem. 2018, 10, 853–858. PubMed PMC

Sun Q., Tran B. V., Cai L., Ma H., Yu X., Yuan C., Stöhr M., Xu W., Angew. Chem. Int. Ed. 2017, 56, 12165–12169; PubMed

Angew. Chem. 2017, 129, 12333–12337.

Cirera B., Sánchez-Grande A., de la Torre B., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mallada B., Zbořil R., Miranda R., Gröning O., Jelínek P., Martín N., Ecija D., Nat. Nanotechnol. 2020, 15, 437–443. PubMed

Urgel J. I., Di Giovannantonio M., Eimre K., Lohr T. G., Liu J., Mishra S., Sun Q., Kinikar A., Widmer R., Stolz S., Bommert M., Berger R., Ruffieux P., Pignedoli C. A., Müllen K., Feng X., Fasel R., Angew. Chem. Int. Ed. 2020, 59, 13281—13287; PubMed PMC

Angew. Chem. 2020, 132, 13383–13389.

Clar E., The Aromatic Sextet, Wiley, New York, 1972.

Di Giovannantonio M., Deniz O., Urgel J. I., Widmer R., Dienel T., Stolz S., Sánchez-Sánchez C., Muntwiler M., Dumslaff T., Berger R., Narita A., Feng X., Müllen K., Ruffieux P., Fasel R., ACS Nano 2018, 12, 74–81. PubMed

Krejčí O., Hapala P., Ondráček M., Jelínek P., Phys. Rev. B 2017, 95, 045407.

Kondo J., Prog. Theor. Phys. 1964, 32, 37–49.

Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M., Comput. Phys. Commun. 2009, 180, 2175–2196.

Horn S., Plasser F., Müller T., Libisch F., Burgdörfer J., Lischka H., Theor. Chem. Acc. 2014, 133, 1511.

Heinrich A. J., Gupta J. A., Lutz C. P., Eigler D. M., Science 2004, 306, 466–469. PubMed

Li J., Sanz S., Corso M., Choi D. J., Peña D., Frederiksen T., Pascual J. I., Nat. Commun. 2019, 10, 1–7. PubMed PMC

Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R., Nat. Nanotechnol. 2020, 15, 22–28. PubMed

Ortiz R., Boto R. A., García-Martínez N., Sancho-García J. C., Melle-Franco M., Fernández-Rossier J., Nano Lett. 2019, 19, 5991–5997. PubMed

Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C., Fasel R., Feng X., Ruffieux P., Angew. Chem. Int. Ed. 2020, 59, 12041–12047; PubMed PMC

Angew. Chem. 2020, 132, 12139–12145.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...