COLUMBUS─An Efficient and General Program Package for Ground and Excited State Computations Including Spin-Orbit Couplings and Dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40626850
PubMed Central
PMC12278233
DOI
10.1021/acs.jpca.5c02047
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The COLUMBUS program system provides the tools for performing high-level multireference (MR) computations, including the multireference configuration interaction (MRCI) method and its multireference averaged quadratic coupled cluster (MR-AQCC) extension, allowing computations on a wide range of fascinating atomic and molecular systems, including the treatment of open-shells and complicated excited state phenomena. The inclusion of spin-orbit coupling (SOC) directly within the MRCI step enables the description of systems containing heavy elements, such as lanthanides and actinides, whose properties are strongly influenced by SOC. Analytic energy gradients and nonadiabatic couplings at the correlated MRCI level provide the foundation for a variety of dynamics studies, giving insight into ultrafast photochemistry. New and ongoing method developments in COLUMBUS include the computation of spin densities, improved descriptions of ionic states, enhancements to the AQCC method, and the porting of COLUMBUS to graphical processing units (GPUs). New external interfaces enable an enhanced description of electronic resonances and molecules in strong laser fields. This work highlights these new developments while providing a detailed account of the diverse applications of COLUMBUS in recent years.
Aix Marseille University CNRS ICR 13397 Marseille France
Departamento de Química CCEN Universidade Federal da Paraíba 58059 900 João Pessoa Brazil
Department of Chemistry Aeronautics Institute of Technology 12228 900 São José dos Campos Brazil
Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409 United States
Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 United States
Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
Department of Chemistry Northwestern University Evanston Illinois 60208 United States
Department of Mechanical Engineering Texas Tech University Lubbock Texas 79409 United States
Department of Physics Ludwig Maximilian University Theresienstrasse 37 80333 Munich Germany
Faculty of Chemistry Nicolaus Copernicus University in Torun 87100 Torun Poland
Institut Universitaire de France 75231 Paris France
Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
IT4Innovations VŠBTechnical University of Ostrava 708 00 Ostrava Czech Republic
Mulliken Center for Theoretical Chemistry University of Bonn 53115 Bonn Germany
National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 United States
ScaDS AI Dresden Leipzig 04105 Leipzig Germany
Stanford Research Computing Stanford University Stanford California 94305 United States
Zobrazit více v PubMed
Plasser F., Barbatti M., Aquino A. J. A., Lischka H.. Electronically Excited States and Photodynamics: A Continuing Challenge. Theor. Chem. Acc. 2012;131(1):1073. doi: 10.1007/s00214-011-1073-y. DOI
González L., Escudero D., Serrano-Andrés L.. Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem. 2012;13(1):28–51. doi: 10.1002/cphc.201100200. PubMed DOI
Boggio-Pasqua M., Bearpark M. J., Klene M., Robb M. A.. A Computational Strategy for Geometry Optimization of Ionic and Covalent Excited States, Applied to Butadiene and Hexatriene. J. Chem. Phys. 2004;120(17):7849–7860. doi: 10.1063/1.1690756. PubMed DOI
Borden W. T., Davidson E. R.. The Importance of Including Dynamic Electron Correlation in Ab Initio Calculations. Acc. Chem. Res. 1996;29(2):67–75. doi: 10.1021/ar950134v. DOI
Roos B. O., Andersson K., Fülscher M. P.. Towards an Accurate Molecular Orbital Theory for Excited States: The Benzene Molecule. Chem. Phys. Lett. 1992;192(1):5–13. doi: 10.1016/0009-2614(92)85419-B. DOI
Grimme S., Hansen A.. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem., Int. Ed. 2015;54(42):12308–12313. doi: 10.1002/anie.201501887. PubMed DOI
Shavitt, I. The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations. In The Unitary Group for the Evaluation of Electronic Energy Matrix Elements; Hinze, J. , Ed.; Lecture Notes in Chemistry; Springer: Berlin, 1981; pp 51–99.
Shepard R., Shavitt I., Pitzer R. M., Comeau D. C., Pepper M., Lischka H., Szalay P. G., Ahlrichs R., Brown F. B., Zhao J.-G.. A Progress Report on the Status of the COLUMBUSMRCI Program System. Int. J. Quantum Chem. 1988;34(S22):149–165. doi: 10.1002/qua.560340819. DOI
Plasser, F. ; Lischka, H. . Multi-Reference Configuration Interaction. In Quantum Chemistry and Dynamics of Excited States; Wiley, 2020; Chapter 9, pp 277–297.
Müller T.. Large-Scale Parallel Uncontracted Multireference-Averaged Quadratic Coupled Cluster: The Ground State of the Chromium Dimer Revisited. J. Phys. Chem. A. 2009;113(45):12729–12740. doi: 10.1021/jp905254u. PubMed DOI
Plasser F., Pašalić H., Gerzabek M. H., Libisch F., Reiter R., Burgdörfer J., Müller T., Shepard R., Lischka H.. The Multiradical Character of One- and Two-Dimensional Graphene Nanoribbons. Angew. Chem., Int. Ed. 2013;52(9):2581–2584. doi: 10.1002/anie.201207671. PubMed DOI PMC
Lischka H., Shepard R., Müller T., Szalay P. G., Pitzer R. M., Aquino A. J. A., do Nascimento M. M. A., Barbatti M., Belcher L. T., Blaudeau J.-P.. et al. The Generality of the GUGA MRCI Approach in COLUMBUS for Treating Complex Quantum Chemistry. J. Chem. Phys. 2020;152(13):134110. doi: 10.1063/1.5144267. PubMed DOI
Yabushita S., Zhang Z., Pitzer R. M.. Spin-Orbit Configuration Interaction Using the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-Orbit Operators. J. Phys. Chem. A. 1999;103(29):5791–5800. doi: 10.1021/jp9901242. DOI
Mai S., Müller T., Plasser F., Marquetand P., Lischka H., González L.. Perturbational Treatment of Spin-Orbit Coupling for Generally Applicable High-Level Multi-Reference Methods. J. Chem. Phys. 2014;141(7):074105. doi: 10.1063/1.4892060. PubMed DOI
Langhoff S. R., Davidson E. R.. Configuration Interaction Calculations on the Nitrogen Molecule. Int. J. Quantum Chem. 1974;8(1):61–72. doi: 10.1002/qua.560080106. DOI
Szalay, P. G. Configuration Interaction: Corrections for Size-Consistency. In Encyclopedia of Computational Chemistry; Wiley, 2005.
do Monte S. A., Spada R. F. K., Alves R. L. R., Belcher L., Shepard R., Lischka H., Plasser F.. Quantification of the Ionic Character of Multiconfigurational Wave Functions: The Qat Diagnostic. J. Phys. Chem. A. 2023;127(46):9842–9852. doi: 10.1021/acs.jpca.3c05559. PubMed DOI PMC
Pople J. A., Seeger R., Krishnan R.. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quantum Chem. 2009;12:149–163. doi: 10.1002/qua.560120820. DOI
Davidson E. R., Silver D. W.. Size Consistency in the Dilute Helium Gas Electronic Structure. Chem. Phys. Lett. 1977;52(3):403–406. doi: 10.1016/0009-2614(77)80475-2. DOI
Szalay P. G., Bartlett R. J.. Multi-Reference Averaged Quadratic Coupled-Cluster Method: A Size-Extensive Modification of Multi-Reference CI. Chem. Phys. Lett. 1993;214(5):481–488. doi: 10.1016/0009-2614(93)85670-J. DOI
Aidas K., Angeli C., Bak K. L., Bakken V., Bast R., Boman L., Christiansen O., Cimiraglia R., Coriani S., Dahle P.. et al. The Dalton Quantum Chemistry Program System. WIREs Comput. Mol. Sci. 2014;4(3):269–284. doi: 10.1002/wcms.1172. PubMed DOI PMC
Li Manni G., Fdez, Galván I., Alavi A., Aleotti F., Aquilante F., Autschbach J., Avagliano D., Baiardi A., Bao J. J., Battaglia S.. et al. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J. Chem. Theory Comput. 2023;19(20):6933–6991. doi: 10.1021/acs.jctc.3c00182. PubMed DOI PMC
Aprà E., Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H. J. J., Alexeev Y., Anchell J.. et al. NWChem: Past, Present, and Future. J. Chem. Phys. 2020;152(18):184102. doi: 10.1063/5.0004997. PubMed DOI
Aquilante F., Autschbach J., Carlson R. K., Chibotaru L. F., Delcey M. G., De Vico L., Fdez, Galván I., Ferré N., Frutos L. M., Gagliardi L.. et al. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. Chem. 2016;37(5):506–541. doi: 10.1002/jcc.24221. PubMed DOI
COLUMBUS . an Ab Initio Electronic Structure Program. https://gitlab.com/columbus-program-system/columbus. (accessed June 09, 2025).
Spada R. F. K., Franco M. P., Nieman R., Aquino A. J. A., Shepard R., Plasser F., Lischka H.. Spin-Density Calculation via the Graphical Unitary Group Approach. Mol. Phys. 2023;121(11–12):e2091049. doi: 10.1080/00268976.2022.2091049. DOI
Shavitt I.. Graph Theoretical Concepts for the Unitary Group Approach to the Many-Electron Correlation Problem. Int. J. Quantum Chem. 2009;12(S11):131–148. doi: 10.1002/qua.560120819. DOI
Gidofalvi G., Shepard R.. The Evaluation of Spin-density Matrices within the Graphically Contracted Function Method. Int. J. Quantum Chem. 2009;109(15):3552–3563. doi: 10.1002/qua.22320. DOI
Nakano M., Champagne B.. Theoretical Design of Open-Shell Singlet Molecular Systems for Nonlinear Optics. J. Phys. Chem. Lett. 2015;6(16):3236–3256. doi: 10.1021/acs.jpclett.5b00956. DOI
Messelberger J., Grünwald A., Pinter P., Hansmann M. M., Munz D.. Carbene Derived Diradicaloids – Building Blocks for Singlet Fission? Chem. Sci. 2018;9(28):6107–6117. doi: 10.1039/C8SC01999A. PubMed DOI PMC
Yu C. P., Chowdhury R., Fu Y., Ghosh P., Zeng W., Mustafa T. B. E., Grüne J., Walker L. E., Congrave D. G., Chua X. W., Murto P., Rao A., Sirringhaus H., Plasser F., Grey C. P., Friend R. H., Bronstein H.. Near-Infrared Luminescent Open-Shell π-Conjugated Systems with a Bright Lowest-Energy Zwitterionic Singlet Excited State. Sci. Adv. 2024;10(30):eado3476. doi: 10.1126/sciadv.ado3476. PubMed DOI PMC
Rudebusch G. E., Zafra J. L., Jorner K., Fukuda K., Marshall J. L., Arrechea-Marcos I., Espejo G. L., Ponce Ortiz R., Gómez-García C. J., Zakharov L. N., Nakano M., Ottosson H., Casado J., Haley M. M.. Diindeno-Fusion of an Anthracene as a Design Strategy for Stable Organic Biradicals. Nat. Chem. 2016;8(8):753–759. doi: 10.1038/nchem.2518. PubMed DOI
Nguyen T. D., Ehrenfreund E., Vardeny Z. V.. Spin-Polarized Light-Emitting Diode Based on an Organic Bipolar Spin Valve. Science. 2012;337(6091):204–209. doi: 10.1126/science.1223444. PubMed DOI
Szwarc M.. Some Remarks on the CH2CH2Molecule. Discuss. Faraday Soc. 1947;2:46–49. doi: 10.1039/df9470200046. DOI
Coulson C. A., Craig D. P., Maccoll A., Pullman A.. P-Quinodimethane and Its Diradical. Discuss. Faraday Soc. 1947;2:36–38. doi: 10.1039/df9470200036. DOI
Chagas J. C. V., Milanez B. D., Oliveira V. P., Pinheiro M. Jr, Ferrão L. F. A., Aquino A. J. A., Lischka H., Machado F. B. C.. A Multi-descriptor Analysis of Substituent Effects on the Structure and Aromaticity of Benzene Derivatives: Π-Conjugation versus Charge Effects. J. Comput. Chem. 2024;45(12):863–877. doi: 10.1002/jcc.27296. PubMed DOI
Matasović L., Bronstein H., Friend R. H., Plasser F.. Classification and Quantitative Characterisation of the Excited States of π-Conjugated Diradicals. Faraday Discuss. 2024;254:107–129. doi: 10.1039/D4FD00055B. PubMed DOI
Schulten K., Ohmine I., Karplus M.. Correlation Effects in the Spectra of Polyenes. J. Chem. Phys. 1976;64(11):4422–4441. doi: 10.1063/1.432121. DOI
Kimber, P. ; Plasser, F. . Classification and Analysis of Molecular Excited States. In Comprehensive Computational Chemistry; Elsevier, 2024; pp 55–83.
Plasser F.. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020;152(8):084108. doi: 10.1063/1.5143076. PubMed DOI
Véril M., Scemama A., Caffarel M., Lipparini F., Boggio-Pasqua M., Jacquemin D., Loos P.. QUESTDB: A Database of Highly Accurate Excitation Energies for the Electronic Structure Community. WIREs Comput. Mol. Sci. 2021;11(5):e1517. doi: 10.1002/wcms.1517. DOI
Chen X. K., Kim D., Brédas J. L.. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Acc. Chem. Res. 2018;51(9):2215–2224. doi: 10.1021/acs.accounts.8b00174. PubMed DOI
Kimber P., Plasser F.. Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition. J. Chem. Theory Comput. 2023;19(8):2340–2352. doi: 10.1021/acs.jctc.3c00125. PubMed DOI PMC
Kimber P., Plasser F.. Toward an Understanding of Electronic Excitation Energies beyond the Molecular Orbital Picture. Phys. Chem. Chem. Phys. 2020;22(11):6058–6080. doi: 10.1039/D0CP00369G. PubMed DOI
Snyder J. W., Parrish R. M., Martínez T. J.. α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF to Closely Approximate MS-CASPT2 Potential Energy Surfaces. J. Phys. Chem. Lett. 2017;8(11):2432–2437. doi: 10.1021/acs.jpclett.7b00940. PubMed DOI
Frutos L. M., Andruniów T., Santoro F., Ferré N., Olivucci M.. Tracking the Excited-State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2007;104(19):7764–7769. doi: 10.1073/pnas.0701732104. PubMed DOI PMC
Carlson R. K., Truhlar D. G., Gagliardi L.. Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82. J. Chem. Theory Comput. 2015;11(9):4077–4085. doi: 10.1021/acs.jctc.5b00609. PubMed DOI
Gdanitz R. J., Ahlrichs R.. The Averaged Coupled-Pair Functional (ACPF): A Size-Extensive Modification of MR CI(SD) Chem. Phys. Lett. 1988;143(5):413–420. doi: 10.1016/0009-2614(88)87388-3. DOI
Szalay P. G., Bartlett R. J.. Approximately Extensive Modifications of the Multireference Configuration Interaction Method: A Theoretical and Practical Analysis. J. Chem. Phys. 1995;103(9):3600–3612. doi: 10.1063/1.470243. DOI
Szalay P. G., Müller T., Gidofalvi G., Lischka H., Shepard R.. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012;112(1):108–181. doi: 10.1021/cr200137a. PubMed DOI
Lischka H., Nachtigallová D., Aquino A. J. A., Szalay P. G., Plasser F., Machado F. B. C., Barbatti M.. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018;118(15):7293–7361. doi: 10.1021/acs.chemrev.8b00244. PubMed DOI
Szalay, P. G. Towards State-Specific Formulation of Multireference Coupled-Cluster Theory: Coupled Electron Pair Approximations (CEPA) Leading to Multireference Configuration Interaction (MR-CI) Type Equations. In Recent Advances in Coupled-Cluster Methods; Bartlett, R. J. , Ed.; World Scientific, 1997; pp 81–123.
Szalay, P. G. Configuration Interaction: Corrections for Size-Consistency. In Encyclopedia of Computational Chemistry; Wiley, 1998.
Szalay P. G., Müller T., Lischka H.. Excitation Energies and Transition Moments by the Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Method. Phys. Chem. Chem. Phys. 2000;2(10):2067–2073. doi: 10.1039/b000224k. DOI
Lischka H., Shepard R., Pitzer R. M., Shavitt I., Dallos M., Müller T., Szalay P. G., Seth M., Kedziora G. S., Yabushita S., Zhang Z.. High-Level Multireference Methods in the Quantum-Chemistry Program System COLUMBUS: Analytic MR-CISD and MR-AQCC Gradients and MR-AQCC-LRT for Excited States, GUGA Spin–Orbit CI and Parallel CI Density. Phys. Chem. Chem. Phys. 2001;3(5):664–673. doi: 10.1039/b008063m. DOI
Horn S., Plasser F., Müller T., Libisch F., Burgdörfer J., Lischka H.. A Comparison of Singlet and Triplet States for One- and Two-Dimensional Graphene Nanoribbons Using Multireference Theory. Theor. Chem. Acc. 2014;133(8):1511. doi: 10.1007/s00214-014-1511-8. DOI
Milanez B. D., Chagas J. C. V., Pinheiro M. Jr, Aquino A. J. A., Lischka H., Machado F. B. C.. Effects on the Aromaticity and on the Biradicaloid Nature of Acenes by the Inclusion of a Cyclobutadiene Linkage. Theor. Chem. Acc. 2020;139(7):113. doi: 10.1007/s00214-020-02624-w. DOI
Müller T., Dallos M., Lischka H., Dubrovay Z., Szalay P. G.. A Systematic Theoretical Investigation of the Valence Excited States of the Diatomic Molecules B 2, C 2, N 2 and O 2. Theor. Chem. Acc.: Theory, Comput., Model. (Theor. Chim. Acta) 2001;105(3):227–243. doi: 10.1007/s002140000210. DOI
Christiansen O., Jorgensen P., Hättig C.. Response Functions from Fourier Component Variational Perturbation Theory Applied to a Time-Averaged Quasienergy. Int. J. Quantum Chem. 1998;68(1):1–52. doi: 10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z. DOI
Dunning T. H.. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989;90(2):1007–1023. doi: 10.1063/1.456153. DOI
Seritan S., Bannwarth C., Fales B. S., Hohenstein E. G., Isborn C. M., Kokkila-Schumacher S. I. L., Li X., Liu F., Luehr N., Snyder J. W., Song C., Titov A. V., Ufimtsev I. S., Wang L., Martínez T. J.. TeraChem: A Graphical Processing Unit-accelerated Electronic Structure Package for large-scale Ab Initio Molecular Dynamics. WIREs Comput. Mol. Sci. 2021;11(2):e1494. doi: 10.1002/wcms.1494. DOI
NVIDIA Corporation . NVIDIA CUDA Fortran Programming Guide 2025. https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.htmlhttps://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.html. (accessed January 31, 2025).
Wilkinson K. A., Sherwood P., Guest M. F., Naidoo K. J.. Acceleration of the GAMESS-UK Electronic Structure Package on Graphical Processing Units. J. Comput. Chem. 2011;32(10):2313–2318. doi: 10.1002/jcc.21815. PubMed DOI
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. . et al. Gaussian 16; Gaussian, Inc.: Wallingford, 2016.
Sun Q., Zhang X., Banerjee S., Bao P., Barbry M., Blunt N. S., Bogdanov N. A., Booth G. H., Chen J., Cui Z.-H., Eriksen J. J., Gao Y., Guo S., Hermann J., Hermes M. R., Koh K., Koval P., Lehtola S., Li Z., Liu J., Mardirossian N., McClain J. D., Motta M., Mussard B., Pham H. Q., Pulkin A., Purwanto W., Robinson P. J., Ronca E., Sayfutyarova E. R., Scheurer M., Schurkus H. F., Smith J. E. T., Sun C., Sun S.-N., Upadhyay S., Wagner L. K., Wang X., White A., Whitfield J. D., Williamson M. J., Wouters S., Yang J., Yu J. M., Zhu T., Berkelbach T. C., Sharma S., Sokolov A. Yu., Chan G. K.-L.. Recent Developments in the PySCF Program Package. J. Chem. Phys. 2020;153(2):024109. doi: 10.1063/5.0006074. PubMed DOI
Roos, B. O. ; Siegbahn, P. E. M. . The Direct Configuration Interaction Method from Molecular Integrals. In Methods of Electronic Structure Theory; Schaefer, H. F., III , Ed.; Springer: New York, 1977; pp 277–318.
Paldus J.. Group Theoretical Approach to the Configuration Interaction and Perturbation Theory Calculations for Atomic and Molecular Systems. J. Chem. Phys. 1974;61(12):5321–5330. doi: 10.1063/1.1681883. DOI
Ahlrichs R., Böhm H., Ehrhardt C., Scharf P., Schiffer H., Lischka H., Schindler M.. Implementation of an Electronic Structure Program System on the CYBER 205. J. Comput. Chem. 1985;6(3):200–208. doi: 10.1002/jcc.540060307. DOI
Werner H.-J., Reinsch E.. The Self-consistent Electron Pairs Method for Multiconfiguration Reference State Functions. J. Chem. Phys. 1982;76(6):3144–3156. doi: 10.1063/1.443357. DOI
Davidson E. R.. The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices. J. Comput. Phys. 1975;17(1):87–94. doi: 10.1016/0021-9991(75)90065-0. DOI
Shepard R., Shavitt I., Lischka H.. Reducing I/O Costs for the Eigenvalue Procedure in Large-scale Configuration Interaction Calculations. J. Comput. Chem. 2002;23(11):1121–1125. doi: 10.1002/jcc.10022. PubMed DOI
Arumainayagam C. R., Garrod R. T., Boyer M. C., Hay A. K., Bao S. T., Campbell J. S., Wang J., Nowak C. M., Arumainayagam M. R., Hodge P. J.. Extraterrestrial Prebiotic Molecules: Photochemistry vs. Radiation Chemistry of Interstellar Ices. Chem. Soc. Rev. 2019;48(8):2293–2314. doi: 10.1039/C7CS00443E. PubMed DOI
Boyer M. C., Rivas N., Tran A. A., Verish C. A., Arumainayagam C. R.. The Role of Low-Energy (≤ 20 EV) Electrons in Astrochemistry. Surf. Sci. 2016;652:26–32. doi: 10.1016/j.susc.2016.03.012. DOI
Swiderek P.. Fundamental Processes in Radiation Damage of DNA. Angew. Chem., Int. Ed. 2006;45(25):4056–4059. doi: 10.1002/anie.200600614. PubMed DOI
Alizadeh E., Orlando T. M., Sanche L.. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66(1):379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI
Arumainayagam C. R., Lee H.-L., Nelson R. B., Haines D. R., Gunawardane R. P.. Low-Energy Electron-Induced Reactions in Condensed Matter. Surf. Sci. Rep. 2010;65(1):1–44. doi: 10.1016/j.surfrep.2009.09.001. DOI
Herbert, J. M. The Quantum Chemistry of Loosely-Bound Electrons. In Reviews in Computational Chemistry; Parrill, A. L. ; Lipkowitz, K. B. , Eds.; Wiley, 2015;Chapter 8, Vol. 28, pp 391–517.
Kawarai Y., Weber Th., Azuma Y., Winstead C., McKoy V., Belkacem A., Slaughter D. S.. Dynamics of the Dissociating Uracil Anion Following Resonant Electron Attachment. J. Phys. Chem. Lett. 2014;5(21):3854–3858. doi: 10.1021/jz501907d. PubMed DOI
Klaiman S., Cederbaum L. S.. Barrierless Single-Electron-Induced cis–rans Isomerization. Angew. Chem. 2015;127(36):10616–10619. doi: 10.1002/ange.201502963. PubMed DOI
Fennimore M. A., Karsili T. N. V., Matsika S.. Mechanisms of H and CO Loss from the Uracil Nucleobase Following Low Energy Electron Irradiation. Phys. Chem. Chem. Phys. 2017;19(26):17233–17241. doi: 10.1039/C7CP01345K. PubMed DOI
Fennimore M. A., Matsika S.. Electronic Resonances of Nucleobases Using Stabilization Methods. J. Phys. Chem. A. 2018;122(16):4048–4057. doi: 10.1021/acs.jpca.8b01523. PubMed DOI
Loupas A., Gorfinkiel J. D.. Shape and Core-Excited Resonances in Electron Scattering from Alanine. J. Chem. Phys. 2019;150(6):064307. doi: 10.1063/1.5081813. PubMed DOI
Thodika M., Mackouse N., Matsika S.. Description of Two-Particle One-Hole Electronic Resonances Using Orbital Stabilization Methods. J. Phys. Chem. A. 2020;124(43):9011–9020. doi: 10.1021/acs.jpca.0c07904. PubMed DOI
Gayvert, J. R. An Open-Source Program for Studying Resonances in Molecules 2021. https://github.com/gayverjr/opencap. (accessed June 08, 2025).
Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press, 2011.
Riss U. V., Meyer H.-D.. Calculation of Resonance Energies and Widths Using the Complex Absorbing Potential Method. J. Phys. B: At., Mol. Opt. Phys. 1993;26(23):4503–4535. doi: 10.1088/0953-4075/26/23/021. DOI
Jagau T.-C., Zuev D., Bravaya K. B., Epifanovsky E., Krylov A. I.. A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach. J. Phys. Chem. Lett. 2014;5(2):310–315. doi: 10.1021/jz402482a. PubMed DOI
Sommerfeld T., Santra R.. Efficient Method to Perform CAP/CI Calculations for Temporary Anions. Int. J. Quantum Chem. 2001;82(5):218–226. doi: 10.1002/qua.1042. DOI
Santra R., Cederbaum L. S.. An Efficient Combination of Computational Techniques for Investigating Electronic Resonance States in Molecules. J. Chem. Phys. 2001;115(15):6853–6861. doi: 10.1063/1.1405117. DOI
Thodika M., Matsika S.. Projected Complex Absorbing Potential Multireference Configuration Interaction Approach for Shape and Feshbach Resonances. J. Chem. Theory Comput. 2022;18(6):3377–3390. doi: 10.1021/acs.jctc.1c01310. PubMed DOI
Thodika, M. Development and Benchmarking of Hermitian and Non-Hermitian Methods for Negative Ion Resonances; Temple University, 2022.
Majety V. P., Zielinski A., Scrinzi A.. Photoionization of Few Electron Systems: A Hybrid Coupled Channels Approach. New J. Phys. 2015;17(6):063002. doi: 10.1088/1367-2630/17/6/063002. DOI
Chundayil H., Majety V. P., Scrinzi A.. The Hybrid Anti-Symmetrized Coupled Channels Method (HaCC) for the TRecX Code. Comput. Phys. Commun. 2024;303:109279. doi: 10.1016/j.cpc.2024.109279. DOI
Majety V. P., Scrinzi A.. Dynamic Exchange in the Strong Field Ionization of Molecules. Phys. Rev. Lett. 2015;115(10):103002. doi: 10.1103/PhysRevLett.115.103002. PubMed DOI
Tao L., Scrinzi A.. Photo-Electron Momentum Spectra from Minimal Volumes: The Time-Dependent Surface Flux Method. New J. Phys. 2012;14(1):013021. doi: 10.1088/1367-2630/14/1/013021. DOI
Majety V. P., Scrinzi A.. Multielectron Effects in Strong-Field Ionization of CO2: Impact on Differential Photoelectron Spectra. Phys. Rev. A. 2017;96(5):053421. doi: 10.1103/PhysRevA.96.053421. DOI
Geim A. K., Novoselov K. S.. The Rise of Graphene. Nat. Mater. 2007;6(3):183–191. doi: 10.1038/nmat1849. PubMed DOI
Nguyen B. H., Nguyen V. H.. Promising Applications of Graphene and Graphene-Based Nanostructures. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016;7(2):023002. doi: 10.1088/2043-6262/7/2/023002. DOI
Gu Y., Qiu Z., Müllen K.. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022;144(26):11499–11524. doi: 10.1021/jacs.2c02491. PubMed DOI PMC
Nieman R., Silva N. J., Aquino A. J. A., Haley M. M., Lischka H.. Interplay of Biradicaloid Character and Singlet/Triplet Energy Splitting for Cis -/ Trans -Diindenoacenes and Related Benzothiophene-Capped Oligomers as Revealed by Extended Multireference Calculations. J. Org. Chem. 2020;85(5):3664–3675. doi: 10.1021/acs.joc.9b03308. PubMed DOI
Kubo T.. Phenalenyl-Based Open-Shell Polycyclic Aromatic Hydrocarbons. Chem. Rec. 2015;15(1):218–232. doi: 10.1002/tcr.201402065. PubMed DOI
Sánchez-Grande A., Urgel J. I., Cahlík A., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mutombo P., Nachtigallová D., Nieman R., Lischka H., de la Torre B., Miranda R., Gröning O., Martín N., Jelínek P., Écija D.. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem., Int. Ed. 2020;59(40):17594–17599. doi: 10.1002/anie.202006276. PubMed DOI PMC
Bettinger H. F.. Electronic Structure of Higher Acenes and Polyacene: The Perspective Developed by Theoretical Analyses. Pure Appl. Chem. 2010;82(4):905–915. doi: 10.1351/PAC-CON-09-10-29. DOI
Ahmed J., Mandal S. K.. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem. Rev. 2022;122(13):11369–11431. doi: 10.1021/acs.chemrev.1c00963. PubMed DOI
Kubo T.. Closed-Shell and Open-Shell Dual Nature of Singlet Diradical Compounds. Pure Appl. Chem. 2023;95(4):363–375. doi: 10.1515/pac-2023-0114. DOI
Takatsuka K., Fueno T., Yamaguchi K.. Distribution of Odd Electrons in Ground-State Molecules. Theor. Chim. Acta. 1978;48(3):175–183. doi: 10.1007/BF00549017. DOI
Head-Gordon M.. Characterizing Unpaired Electrons from the One-Particle Density Matrix. Chem. Phys. Lett. 2003;372(3–4):508–511. doi: 10.1016/S0009-2614(03)00422-6. DOI
Plasser F., Wormit M., Dreuw A.. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism. J. Chem. Phys. 2014;141(2):024106. doi: 10.1063/1.4885819. PubMed DOI
Bauer C. A., Hansen A., Grimme S.. The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. Chem. - Eur. J. 2017;23(25):6150–6164. doi: 10.1002/chem.201604682. PubMed DOI
Nieman R., Carvalho J. R., Jayee B., Hansen A., Aquino A. J. A., Kertesz M., Lischka H.. Polyradical Character Assessment Using Multireference Calculations and Comparison with Density-Functional Derived Fractional Occupation Number Weighted Density Analysis. Phys. Chem. Chem. Phys. 2023;25(40):27380–27393. doi: 10.1039/D3CP03734G. PubMed DOI
Carvalho J. R., Nieman R., Kertesz M., Aquino A. J. A., Hansen A., Lischka H.. Multireference Calculations on Bond Dissociation and Biradical Polycyclic Aromatic Hydrocarbons as Guidance for Fractional Occupation Number Weighted Density Analysis in DFT Calculations. Theor. Chem. Acc. 2024;143(10):69. doi: 10.1007/s00214-024-03143-8. DOI
Staroverov V. N., Davidson E. R.. Distribution of Effectively Unpaired Electrons. Chem. Phys. Lett. 2000;330(1–2):161–168. doi: 10.1016/S0009-2614(00)01088-5. DOI
Tao J., Perdew J. P., Staroverov V. N., Scuseria G. E.. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003;91(14):3–6. doi: 10.1103/PhysRevLett.91.146401. PubMed DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI
Tsuneda T., Hirao K.. Long-range Correction for Density Functional Theory. WIREs Comput. Mol. Sci. 2014;4(4):375–390. doi: 10.1002/wcms.1178. DOI
Bannwarth C., Ehlert S., Grimme S.. GFN2-XTBAn Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019;15(3):1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended Tight-binding Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021;11(2):e1493. doi: 10.1002/wcms.1493. DOI
Bhatt M. D., Kim H., Kim G.. Various Defects in Graphene: A Review. RSC Adv. 2022;12(33):21520–21547. doi: 10.1039/D2RA01436J. PubMed DOI PMC
Machado F. B. C., Aquino A. J. A., Lischka H.. The Diverse Manifold of Electronic States Generated by a Single Carbon Defect in a Graphene Sheet: Multireference Calculations Using a Pyrene Defect Model. ChemPhysChem. 2014;15(15):3334–3341. doi: 10.1002/cphc.201402304. PubMed DOI
Pinheiro M., Cardoso D. V. V., Aquino A. J. A., Machado F. B. C., Lischka H.. The Characterization of Electronic Defect States of Single and Double Carbon Vacancies in Graphene Sheets Using Molecular Density Functional Theory. Mol. Phys. 2019;117(9–12):1519–1531. doi: 10.1080/00268976.2019.1567848. DOI
Nieman R., Das A., Aquino A. J. A., Amorim R. G., Machado F. B. C., Lischka H.. Single and Double Carbon Vacancies in Pyrene as First Models for Graphene Defects: A Survey of the Chemical Reactivity toward Hydrogen. Chem. Phys. 2017;482:346–354. doi: 10.1016/j.chemphys.2016.08.007. DOI
Nieman R., Oliveira V. P., Jayee B., Adelia A. J. A., Machado F. B. C., Lischka H.. High-Level Multireference Investigations on the Electronic States in Single-Vacancy (SV) Graphene Defects Using a Pyrene-SV Model. J. Phys. Chem. A. 2023;127(40):8287–8296. doi: 10.1021/acs.jpca.3c04099. PubMed DOI
Hariharan P. C., Pople J. A.. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta. 1973;28(3):213–222. doi: 10.1007/BF00533485. DOI
Shu C., Yang Z., Rajca A.. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem. Rev. 2023;123(20):11954–12003. doi: 10.1021/acs.chemrev.3c00406. PubMed DOI
Pozo I., Bogani L.. A Perspective on Radicaloid Conjugated Polycyclic Hydrocarbons. Trends Chem. 2024;6(10):581–595. doi: 10.1016/j.trechm.2024.08.005. DOI
Zeng W., Wu J.. Open-Shell Graphene Fragments. Chem. 2021;7(2):358–386. doi: 10.1016/j.chempr.2020.10.009. DOI
Yu H., Jing Y., Heine T.. Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices. Acc. Chem. Res. 2025;58(1):61–72. doi: 10.1021/acs.accounts.4c00557. PubMed DOI PMC
Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C. A., Müllen K., Fasel R., Feng X., Ruffieux P.. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141(27):10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI
Sanz-Rodrigo J., Ricci G., Olivier Y., Sancho-García J. C.. Negative Singlet–Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. J. Phys. Chem. A. 2021;125(2):513–522. doi: 10.1021/acs.jpca.0c08029. PubMed DOI
Martínez-Carracedo G., Oroszlány L., García-Fuente A., Szunyogh L., Ferrer J.. Electrically Driven Singlet-Triplet Transition in Triangulene Spin-1 Chains. Phys. Rev. B. 2023;107(3):035432. doi: 10.1103/PhysRevB.107.035432. DOI
Su J., Telychko M., Song S., Lu J.. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem., Int. Ed. 2020;59(20):7658–7668. doi: 10.1002/anie.201913783. PubMed DOI
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Su J., Fan W., Mutombo P., Peng X., Song S., Ondráček M., Golub P., Brabec J., Veis L., Telychko M., Jelínek P., Wu J., Lu J.. On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Lett. 2021;21(1):861–867. doi: 10.1021/acs.nanolett.0c04627. PubMed DOI
Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C. A., Fasel R., Feng X., Ruffieux P.. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem., Int. Ed. 2020;59(29):12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC
Yu H., Heine T.. Magnetic Coupling Control in Triangulene Dimers. J. Am. Chem. Soc. 2023;145(35):19303–19311. doi: 10.1021/jacs.3c05178. PubMed DOI PMC
Yu H., Sun J., Heine T.. Predicting Magnetic Coupling and Spin-Polarization Energy in Triangulene Analogues. J. Chem. Theory Comput. 2023;19(12):3486–3497. doi: 10.1021/acs.jctc.3c00175. PubMed DOI
Saleem Y., Steenbock T., Alhadi E. R. J., Pasek W., Bester G., Potasz P.. Superexchange Mechanism in Coupled Triangulenes Forming Spin-1 Chains. Nano Lett. 2024;24(24):7417–7423. doi: 10.1021/acs.nanolett.4c01604. PubMed DOI PMC
Weng T., Xu Z., Li K., Guo Y., Chen X., Li Z., Sun Z.. 1,1′-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J. Am. Chem. Soc. 2024;146(38):26454–26465. doi: 10.1021/jacs.4c09627. PubMed DOI
Ortiz R., Catarina G., Fernández-Rossier J.. Theory of Triangulene Two-Dimensional Crystals. 2d Mater. 2023;10(1):015015. doi: 10.1088/2053-1583/aca4e2. DOI
Ovchinnikov A. A.. Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds - (Do Organic Ferromagnetics Exist?) Theor Chim Acta. 1978;47(4):297–304. doi: 10.1007/BF00549259. DOI
Lieb E. H.. Two Theorems on the Hubbard Model. Phys. Rev. Lett. 1989;62(10):1201–1204. doi: 10.1103/PhysRevLett.62.1201. PubMed DOI
Itkis M. E., Chi X., Cordes A. W., Haddon R. C.. Magneto-Opto-Electronic Bistability in a Phenalenyl-Based Neutral Radical. Science. 2002;296(5572):1443–1445. doi: 10.1126/science.1071372. PubMed DOI
Yang Y., Blacque O., Sato S., Juríček M.. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop. Angew. Chem., Int. Ed. 2021;60(24):13529–13535. doi: 10.1002/anie.202101792. PubMed DOI PMC
Pal S. K., Itkis M. E., Tham F. S., Reed R. W., Oakley R. T., Haddon R. C.. Resonating Valence-Bond Ground State in a Phenalenyl-Based Neutral Radical Conductor. Science. 2005;309(5732):281–284. doi: 10.1126/science.1112446. PubMed DOI
Pariyar A., Vijaykumar G., Bhunia M., Dey S. Kr., Singh S. K., Kurungot S., Mandal S. K.. Switching Closed-Shell to Open-Shell Phenalenyl: Toward Designing Electroactive Materials. J. Am. Chem. Soc. 2015;137(18):5955–5960. doi: 10.1021/jacs.5b00272. PubMed DOI
Morita Y., Aoki T., Fukui K., Nakazawa S., Tamaki K., Suzuki S., Fuyuhiro A., Yamamoto K., Sato K., Shiomi D., Naito A., Takui T., Nakasuji K.. A New Trend in Phenalenyl Chemistry: A Persistent Neutral Radical, 2,5,8-Tri-Tert-Butyl-1,3-Diazaphenalenyl, and the Excited Triplet State of the Gablesyn-Dimer in the Crystal of Column Motif. Angew. Chem., Int. Ed. 2002;41(10):1793–1796. doi: 10.1002/1521-3773(20020517)41:10<1793::AID-ANIE1793>3.0.CO;2-G. PubMed DOI
Das A., Müller T., Plasser F., Lischka H.. Polyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study. J. Phys. Chem. A. 2016;120(9):1625–1636. doi: 10.1021/acs.jpca.5b12393. PubMed DOI PMC
Hehre W. J., Ditchfield R., Pople J. A.. Self Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972;56(5):2257–2261. doi: 10.1063/1.1677527. DOI
Grimme S.. Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction. J. Comput. Chem. 2006;27(15):1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Sirianni D. A., Song X., Wairegi S., Wang E. B., Mendoza-Gomez S. A., Luxon A., Zimmerley M., Nussdorf A., Filatov M., Hoffmann R., Parish C. A.. Variations on the Bergman Cyclization Theme: Electrocyclizations of Ionic Penta-, Hepta-, and Octadiynes. J. Am. Chem. Soc. 2023;145(39):21408–21418. doi: 10.1021/jacs.3c06691. PubMed DOI PMC
Jones R. R., Bergman R. G.. P-Benzyne. Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure. J. Am. Chem. Soc. 1972;94(2):660–661. doi: 10.1021/ja00757a071. DOI
Church D. F., Pryor W. A.. Free-Radical Chemistry of Cigarette Smoke and Its Toxicological Implications. Environ. Health Perspect. 1985;64:111–126. doi: 10.1289/ehp.8564111. PubMed DOI PMC
Russell K. E., Tobolsky A. V.. Diradicals in Solution: Role in Polymerization. J. Am. Chem. Soc. 1954;76(2):395–399. doi: 10.1021/ja01631a024. DOI
Slipchenko L. V., Krylov A. I.. Singlet-Triplet Gaps in Diradicals by the Spin-Flip Approach: A Benchmark Study. J. Chem. Phys. 2002;117(10):4694–4708. doi: 10.1063/1.1498819. DOI
Wang E. B., Parish C. A., Lischka H.. An Extended Multireference Study of the Electronic States of Para -Benzyne. J. Chem. Phys. 2008;129(4):044306. doi: 10.1063/1.2955744. PubMed DOI
Vu K., Pandian J., Zhang B., Annas C., Parker A. J., Mancini J. S., Wang E. B., Saldana-Greco D., Nelson E. S., Springsted G., Lischka H., Plasser F., Parish C. A.. Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Study of the Geometries and Energies for Ortho -, Meta - and Para -Benzyne. J. Phys. Chem. A. 2024;128(37):7816–7829. doi: 10.1021/acs.jpca.4c04099. PubMed DOI PMC
Scott T., Nieman R., Luxon A., Zhang B., Lischka H., Gagliardi L., Parish C. A.. A Multireference Ab Initio Study of the Diradical Isomers of Pyrazine. J. Phys. Chem. A. 2019;123(10):2049–2057. doi: 10.1021/acs.jpca.8b12440. PubMed DOI
Pandian J., Vu K., Muya J. T., Parker A., Ancajas C. M. F., Saldana-Greco D., Yewer T., Parish C.. A Highly Correlated, Multireference Study of the Lowest Lying Singlet and Triplet States of the Four Thiophene Diradicals. J. Comput. Chem. 2025;46(3):e70044. doi: 10.1002/jcc.70044. PubMed DOI PMC
Okamoto K., Kitagawa T., Takeuchi K., Komatsu K., Takahashi K.. Isolation of a Hydrocarbon Salt and Preparation of a Hydrocarbon Which Heterolyses to a Carbocation and a Carbanion. J. Chem. Soc. Chem. Commun. 1985;(3):173–174. doi: 10.1039/c39850000173. DOI
Okamoto K., Kitagawa T., Takeuchi K., Komatsu K., Miyabo A.. A Hydrocarbon Existing Uniquely in Solution: A Heterolytically Dissociative Hydrocarbon That Produces the Corresponding Hydrocarbon Salt by Crystallization. J. Chem. Soc. Chem. Commun. 1988;(14):923–924. doi: 10.1039/c39880000923. DOI
Kitagawa T., Tanaka T., Murakita H., Nishikawa A., Takeuchi K.. Reaction of Cyclopropenylium Ions with the Tert-Butyl-C60 Anion: Carbocation–Carbanion Coordination vs Salt Formation. Tetrahedron. 2001;57(17):3537–3547. doi: 10.1016/S0040-4020(01)00236-8. DOI
Tanaka T., Kitagawa T., Komatsu K., Takeuchi K.. Synthesis of a Hydrocarbon Salt Having a Fullerene Framework. J. Am. Chem. Soc. 1997;119(39):9313–9314. doi: 10.1021/ja970006x. DOI
Ventura E., Alves R. L. R., do Monte S. A.. The Kinetics of Three Coupled Irreversible Elementary Reactions: Two Parallel Mixed Second Order Reactions Followed by a First Order Reaction. J. Math. Chem. 2024;62(4):922–935. doi: 10.1007/s10910-024-01580-1. DOI
Ventura E., Rodrigues G. P., Leitão E. F. V., do Monte S. A.. Theoretical Study of an Authentic Hydrocarbon Ion Pair. ACS Omega. 2024;9(32):34981–34989. doi: 10.1021/acsomega.4c04914. PubMed DOI PMC
Alves R. L. R., Leitão E. F. V., Ventura E., do Monte S. A.. A Genuine Hydrocarbon Ion Pair More Stable Than Its Covalent Counterpart. A Computational Study. J. Comput. Chem. 2025;46(8):e70079. doi: 10.1002/jcc.70079. PubMed DOI
Kolomnikova G. D., Parnes Z. N.. Advances in the Chemistry of the Tropylium Ion. Russ. Chem. Rev. 1967;36(10):735–753. doi: 10.1070/RC1967v036n10ABEH001768. DOI
Koenig T., Chang J. C.. Helium(I) Photoelectron Spectrum of Tropyl Radical. J. Am. Chem. Soc. 1978;100(7):2240–2242. doi: 10.1021/ja00475a050. DOI
McDonald R. N., Bianchina E. J., Tung C. C.. Electron Photodetachment of Cyclopentadienylidene Anion Radical in a Flowing Afterglow Apparatus: EA and.DELTA.Hf.Degree. of Cyclopentadienylidene. J. Am. Chem. Soc. 1991;113(19):7115–7121. doi: 10.1021/ja00019a005. DOI
Silva A. J. F. W. H. de S., Rodrigues G. P., Ventura E., do Monte S. A.. Photodissociation and Formation of an Ion-pair in CH2 FCl (HCFC-31) J. Comput. Chem. 2024;45(8):476–486. doi: 10.1002/jcc.27257. PubMed DOI
Bezerra M. G., Leitão E. F. V., de Andrade R. B., Ventura E., do Monte S. A.. Photochemistry of Monohydrated Chloromethane: Formation of Free and Hydrated Cl – and CH 3 + Ions from a Solvent-Shared Semi-Ion-Pair. J. Phys. Chem. A. 2021;125(39):8603–8614. doi: 10.1021/acs.jpca.1c05704. PubMed DOI
Ventura E., do Monte S. A.. Hydrogen-Bonded Contact Ion Pair in Gaseous Chloroethane: A Multi-Reference Configuration Interaction with Singles and Doubles (MR-CISD) Study Including Extensivity Corrections. Theor. Chem. Acc. 2020;139(3):49. doi: 10.1007/s00214-020-2561-8. DOI
de Medeiros V. C., de Andrade R. B., Rodrigues G. P., Bauerfeldt G. F., Ventura E., Barbatti M., do Monte S. A.. Photochemistry of CF 3 Cl: Quenching of Charged Fragments Is Caused by Nonadiabatic Effects. J. Chem. Theory Comput. 2018;14(9):4844–4855. doi: 10.1021/acs.jctc.8b00457. PubMed DOI
de Medeiros V. C., de Andrade R. B., Leitão E. F. V., Ventura E., Bauerfeldt G. F., Barbatti M., do Monte S. A.. Photochemistry of CH 3 Cl: Dissociation and CH···Cl Hydrogen Bond Formation. J. Am. Chem. Soc. 2016;138(1):272–280. doi: 10.1021/jacs.5b10573. PubMed DOI
Gagliardi L., Roos B. O.. Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quintuple Bond. Nature. 2005;433(7028):848–851. doi: 10.1038/nature03249. PubMed DOI
Roos B. O., Malmqvist P.-Å., Gagliardi L.. Exploring the Actinide–Actinide Bond: Theoretical Studies of the Chemical Bond in Ac 2, Th 2, Pa 2, and U 2 . J. Am. Chem. Soc. 2006;128(51):17000–17006. doi: 10.1021/ja066615z. PubMed DOI
Knecht S., Jensen H. J. Aa., Saue T.. Relativistic Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quadruple Bond. Nat. Chem. 2019;11(1):40–44. doi: 10.1038/s41557-018-0158-9. PubMed DOI
Peterson K. A.. Correlation Consistent Basis Sets for Actinides. I. The Th and U Atoms. J. Chem. Phys. 2015;142(7):074105. doi: 10.1063/1.4907596. PubMed DOI
Aquilante F., Autschbach J., Baiardi A., Battaglia S., Borin V. A., Chibotaru L. F., Conti I., De Vico L., Delcey M., Galván I. F., Ferré N., Freitag L., Garavelli M., Gong X., Knecht S., Larsson E. D., Lindh R., Lundberg M., Malmqvist PÅ., Nenov A., Norell J., Odelius M., Olivucci M., Pedersen T. B., Pedraza-González L., Phung Q. M., Pierloot K., Reiher M., Schapiro I., Segarra-Martí J., Segatta F., Seijo L., Sen S., Sergentu D.-C., Stein C. J., Ungur L., Vacher M., Valentini A., Veryazov V.. Modern Quantum Chemistry with [Open]Molcas. J. Chem. Phys. 2020;152(21):214117. doi: 10.1063/5.0004835. PubMed DOI
Glendening E. D., Landis C. R., Weinhold F.. Natural Bond Orbital Methods. WIREs Comput. Mol. Sci. 2012;2(1):42. doi: 10.1002/wcms.51. DOI
Glendening, E. D. ; Badenhoop, J. K. ; Reed, A. E. ; Carpenter, J. E. ; Bohmann, J. A. ; Morales, C. M. ; Karafiloglou, P. ; Landis, C. R. ; Weinhold, F. . NBO 7.0. Madison, Wisconsin. 2018.
Zaichenko, A. ; Autschbach, J. . MolcasTo47 2024. https://github.com/jautschbach/molcasto47. (accessed March 24, 2025).
Ciborowski S. M., Mitra A., Harris R. M., Liu G., Sharma P., Khetrapal N., Blankenhorn M., Gagliardi L., Bowen K. H.. Metal–Metal Bonding in Actinide Dimers: U2 and U2- J. Am. Chem. Soc. 2021;143(41):17023–17028. doi: 10.1021/jacs.1c06417. PubMed DOI
Wiberg K. B.. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 1968;24(3):1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI
Mayer I.. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007;28(1):204–221. doi: 10.1002/jcc.20494. PubMed DOI
Khokhlov D., Belov A.. Toward an Accurate Ab Initio Description of Low-Lying Singlet Excited States of Polyenes. J. Chem. Theory Comput. 2021;17(7):4301–4315. doi: 10.1021/acs.jctc.0c01293. PubMed DOI
Müller T., Dallos M., Lischka H.. The Ethylene 1 1B1u V State Revisited. J. Chem. Phys. 1999;110(15):7176–7184. doi: 10.1063/1.478621. DOI
Dallos M., Lischka H.. A Systematic Theoretical Investigation of the Lowest Valence- and Rydberg-Excited Singlet States of Trans-Butadiene. The Character of the 1 1Bu(V) State Revisited. Theor. Chem. Acc. 2004;112(1):16–26. doi: 10.1007/s00214-003-0557-9. DOI
Chagas J. C. V., F dos Santos L. G., Nieman R., Aquino A. J. A., do Monte S. A., Plasser F., Szalay P. G., Lischka H., Machado F. B. C.. Low-Lying Excited States of Linear All- Trans Polyenes: The σ–π Electron Correlation and the Description of Ionic States. Phys. Chem. Chem. Phys. 2025;27(15):7916–7928. doi: 10.1039/D5CP00339C. PubMed DOI
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.. Basis-Set Convergence in Correlated Calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286(3–4):243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI
Kossoski F., Boggio-Pasqua M., Loos P.-F., Jacquemin D.. Reference Energies for Double Excitations: Improvement and Extension. J. Chem. Theory Comput. 2024;20(13):5655–5678. doi: 10.1021/acs.jctc.4c00410. PubMed DOI
Schreiber M., Silva-Junior M. R., Sauer S. P. A., Thiel W.. Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008;128(13):134110. doi: 10.1063/1.2889385. PubMed DOI
Angeli C.. On the Nature of the π → Π* Ionic Excited States: The V State of Ethene as a Prototype. J. Comput. Chem. 2009;30(8):1319–1333. doi: 10.1002/jcc.21155. PubMed DOI
Brédas J.-L., Norton J. E., Cornil J., Coropceanu V.. Molecular Understanding of Organic Solar Cells: The Challenges. Acc. Chem. Res. 2009;42(11):1691–1699. doi: 10.1021/ar900099h. PubMed DOI
Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A. A.. Heterojunction Photocatalysts. Adv. Mater. 2017;29(20):1601694. doi: 10.1002/adma.201601694. PubMed DOI
Shao X., Aquino A. J. A., Otyepka M., Nachtigallová D., Lischka H.. Tuning the UV Spectrum of PAHs by Means of Different N-Doping Types Taking Pyrene as Paradigmatic Example: Categorization: Via Valence Bond Theory and High-Level Computational Approaches. Phys. Chem. Chem. Phys. 2020;22(38):22003–22015. doi: 10.1039/D0CP02688C. PubMed DOI
Pinheiro M., Ferrão L. F. A., Bettanin F., Aquino A. J. A., Machado F. B. C., Lischka H.. How to Efficiently Tune the Biradicaloid Nature of Acenes by Chemical Doping with Boron and Nitrogen. Phys. Chem. Chem. Phys. 2017;19(29):19225–19233. doi: 10.1039/C7CP03198J. PubMed DOI
Pimentel J. V. M., Chagas J. C. V., Pinheiro M., Aquino A. J. A., Lischka H., Machado F. B. C.. Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials. J. Phys. Chem. A. 2025;129(2):470–480. doi: 10.1021/acs.jpca.4c06481. PubMed DOI
Zeng T., Mellerup S. K., Yang D., Wang X., Wang S., Stamplecoskie K.. Identifying (BN) 2 -Pyrenes as a New Class of Singlet Fission Chromophores: Significance of Azaborine Substitution. J. Phys. Chem. Lett. 2018;9(11):2919–2927. doi: 10.1021/acs.jpclett.8b01226. PubMed DOI
Pinheiro M., Machado F. B. C., Plasser F., Aquino A. J. A., Lischka H.. A Systematic Analysis of Excitonic Properties to Seek Optimal Singlet Fission: The BN-Substitution Patterns in Tetracene. J. Mater. Chem. C Mater. 2020;8(23):7793–7804. doi: 10.1039/C9TC06581D. DOI
Hachmann J., Dorando J. J., Avilés M., Chan G. K.-L.. The Radical Character of the Acenes: A Density Matrix Renormalization Group Study. J. Chem. Phys. 2007;127(13):134309. doi: 10.1063/1.2768362. PubMed DOI
Torres A. E., Guadarrama P., Fomine S.. Multiconfigurational Character of the Ground States of Polycyclic Aromatic Hydrocarbons. A Systematic Study. J. Mol. Model. 2014;20(5):2208. doi: 10.1007/s00894-014-2208-6. PubMed DOI
dos Santos L. G. F., Chagas J. C. V., Ferrão L. F. A., Aquino A. J. A., Nieman R., Lischka H., Machado F. B. C.. Tuning Aromaticity, Stability and Radicaloid Character of Periacenes by Chemical BN Doping. J. Comput. Chem. 2025;46(3):e70039. doi: 10.1002/jcc.70039. PubMed DOI
Plasser F., Lischka H.. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem. Theory Comput. 2012;8(8):2777–2789. doi: 10.1021/ct300307c. PubMed DOI
F dos Santos L. G., Chagas J. C. V., Nieman R., Aquino A. J. A., Machado F. B. C., Lischka H.. Charge Transfer within Excited States of Boron/Nitrogen Doped Polycyclic Aromatic Hydrocarbons. Phys. Chem. Chem. Phys. 2025;27(22):11558–11569. doi: 10.1039/D5CP00618J. PubMed DOI
do Casal M. T., Toldo J. M., Barbatti M., Plasser F.. Classification of Doubly Excited Molecular Electronic States. Chem. Sci. 2023;14(15):4012–4026. doi: 10.1039/D2SC06990C. PubMed DOI PMC
Krauss M., Stevens W. J.. Effective Potentials in Molecular Quantum Chemistry. Annu. Rev. Phys. Chem. 1984;35(1):357–385. doi: 10.1146/annurev.pc.35.100184.002041. DOI
Dolg M., Stoll H.. Chapter 152 Electronic Structure Calculations for Molecules Containing Lanthanide Atoms. Handb. Phys. Chem. Rare Earths. 1996;22:607–729. doi: 10.1016/S0168-1273(96)22009-4. DOI
Heß B. A., Marian C. M., Wahlgren U., Gropen O.. A Mean-Field Spin-Orbit Method Applicable to Correlated Wavefunctions. Chem. Phys. Lett. 1996;251(5–6):365–371. doi: 10.1016/0009-2614(96)00119-4. DOI
Zhang, Z. Quantum Algorithm for a Convergent Series of Approximations towards the Exact Solution of the Lowest Eigenstates of a Hamiltonian. 2020, arXiv:2009.03537. arXiv.org e-Printarchive. https://arxiv.org/abs/2009.03537.
Veis L., Višňák J., Fleig T., Knecht S., Saue T., Visscher L., Pittner J.. Relativistic Quantum Chemistry on Quantum Computers. Phys. Rev. A. 2012;85(3):030304. doi: 10.1103/PhysRevA.85.030304. DOI
Matsika S., Zhang Z., Brozell S. R., Blaudeau J.-P., Wang Q., Pitzer R. M.. Electronic Structure and Spectra of Actinyl Ions. J. Phys. Chem. A. 2001;105(15):3825–3828. doi: 10.1021/jp003085z. DOI
Tyagi R., Zhang Z., Pitzer R. M.. Electronic Spectrum of the UO and UO + Molecules. J. Phys. Chem. A. 2014;118(50):11758–11767. doi: 10.1021/jp505722y. PubMed DOI
Zhang Z., Pitzer R. M.. Application of Relativistic Quantum Chemistry to the Electronic Energy Levels of the Uranyl Ion. J. Phys. Chem. A. 1999;103(34):6880–6886. doi: 10.1021/jp991867q. DOI
Matsika S., Pitzer R. M.. Electronic Spectrum of the NpO2 2+ and NpO2 + Ions. J. Phys. Chem. A. 2000;104(17):4064–4068. doi: 10.1021/jp993767q. DOI
Yang T., Tyagi R., Zhang Z., Pitzer R. M.. Configuration Interaction Studies on the Electronic States of the CUO Molecule. Mol. Phys. 2009;107(8–12):1193–1195. doi: 10.1080/00268970902804534. DOI
Li J., Bursten B. E., Liang B., Andrews L.. Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices. Science. 2002;295(5563):2242–2245. doi: 10.1126/science.1069342. PubMed DOI
Andrews L., Liang B., Li J., Bursten B. E.. Ground-State Reversal by Matrix Interaction: Electronic States and Vibrational Frequencies of Cuo in Solid Argon and Neon. Angew. Chem., Int. Ed. 2000;39(24):4565–4567. doi: 10.1002/1521-3773(20001215)39:24<4565::AID-ANIE4565>3.0.CO;2-R. PubMed DOI
Barbatti M., Lischka H.. Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum-Classical Dynamics. J. Am. Chem. Soc. 2008;130(21):6831–6839. doi: 10.1021/ja800589p. PubMed DOI
Sellner B., Barbatti M., Müller T., Domcke W., Lischka H.. Ultrafast Non-Adiabatic Dynamics of Ethylene Including Rydberg States. Mol. Phys. 2013;111(16–17):2439–2450. doi: 10.1080/00268976.2013.813590. DOI
Mukherjee S., Mattos R. S., Toldo J. M., Lischka H., Barbatti M.. Prediction Challenge: Simulating Rydberg Photoexcited Cyclobutanone with Surface Hopping Dynamics Based on Different Electronic Structure Methods. J. Chem. Phys. 2024;160(15):154306. doi: 10.1063/5.0203636. PubMed DOI
Crespo-Otero R., Barbatti M.. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem. Rev. 2018;118(15):7026–7068. doi: 10.1021/acs.chemrev.7b00577. PubMed DOI
Persico M., Granucci G.. An Overview of Nonadiabatic Dynamics Simulations Methods, with Focus on the Direct Approach versus the Fitting of Potential Energy Surfaces. Theor. Chem. Acc. 2014;133(9):1526. doi: 10.1007/s00214-014-1526-1. DOI
Pittner J., Lischka H., Barbatti M.. Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009;356(1–3):147–152. doi: 10.1016/j.chemphys.2008.10.013. DOI
Plasser F., Ruckenbauer M., Mai S., Oppel M., Marquetand P., González L.. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps. J. Chem. Theory Comput. 2016;12(3):1207–1219. doi: 10.1021/acs.jctc.5b01148. PubMed DOI PMC
do Casal M. T., Toldo J. M., Pinheiro M. Jr., Barbatti M.. Fewest Switches Surface Hopping with Baeck-An Couplings. Open Res. Europe. 2021;1:49. doi: 10.12688/openreseurope.13624.1. PubMed DOI PMC
Kossoski F., Barbatti M.. Nonadiabatic Dynamics in Multidimensional Complex Potential Energy Surfaces. Chem. Sci. 2020;11(36):9827–9835. doi: 10.1039/D0SC04197A. PubMed DOI PMC
Martyka M., Zhang L., Ge F., Hou Y.-F., Jankowska J., Barbatti M., Dral P. O.. Charting Electronic-State Manifolds across Molecules with Multi-State Learning and Gap-Driven Dynamics via Efficient and Robust Active Learning. npj Comput. Mater. 2025;11(1):132. doi: 10.1038/s41524-025-01636-z. PubMed DOI PMC
Westermayr J., Gastegger M., Menger M. F. S. J., Mai S., González L., Marquetand P.. Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations. Chem. Sci. 2019;10(35):8100–8107. doi: 10.1039/C9SC01742A. PubMed DOI PMC
Westermayr J., Marquetand P.. Machine Learning for Electronically Excited States of Molecules. Chem. Rev. 2021;121(16):9873–9926. doi: 10.1021/acs.chemrev.0c00749. PubMed DOI PMC
Dral P. O., Barbatti M.. Molecular Excited States through a Machine Learning Lens. Nat. Rev. Chem. 2021;5(6):388–405. doi: 10.1038/s41570-021-00278-1. PubMed DOI
Li J., Lopez S. A.. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Acc. Chem. Res. 2022;55(14):1972–1984. doi: 10.1021/acs.accounts.2c00288. PubMed DOI
Mai S., Marquetand P., González L.. A General Method to Describe Intersystem Crossing Dynamics in Trajectory Surface Hopping. Int. J. Quantum Chem. 2015;115(18):1215–1231. doi: 10.1002/qua.24891. DOI
Mai S., Marquetand P., González L.. Nonadiabatic Dynamics: The SHARC Approach. WIREs Comput. Mol. Sci. 2018;8(6):e1370. doi: 10.1002/wcms.1370. PubMed DOI PMC
Mai, S. ; Bachmair, B. ; Gagliardi, L. ; Gallmetzer, H. G. ; Grünewald, L. ; Hennefarth, M. R. ; Høyer, N. M. ; Korsaye, F. A. ; Mausenberger, S. ; Oppel, M. ; Piteša, T. ; Polonius, S. ; Sangiogo Gil, E. ; Shu, Y. ; Singer, N. K. ; Tiefenbacher, M. X. ; Truhlar, D. G. ; Vörös, D. ; Zhang, L. ; González, L. . SHARC4.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics 2025. https://sharc-md.org/. (accessed June 17, 2025).
Richter M., Marquetand P., González-Vázquez J., Sola I., González L.. SHARC: Ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011;7(5):1253–1258. doi: 10.1021/ct1007394. PubMed DOI
Westermayr J., Gastegger M., Marquetand P.. Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics. J. Phys. Chem. Lett. 2020;11(10):3828–3834. doi: 10.1021/acs.jpclett.0c00527. PubMed DOI PMC
Schütt K. T., Sauceda H. E., Kindermans P.-J., Tkatchenko A., Müller K.-R.. SchNet – A Deep Learning Architecture for Molecules and Materials. J. Chem. Phys. 2018;148(24):241722. doi: 10.1063/1.5019779. PubMed DOI
Schütt K. T., Kessel P., Gastegger M., Nicoli K. A., Tkatchenko A., Müller K.-R.. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 2019;15(1):448–455. doi: 10.1021/acs.jctc.8b00908. PubMed DOI
Mausenberger S., Müller C., Tkatchenko A., Marquetand P., González L., Westermayr J.. S pai NN: Equivariant Message Passing for Excited-State Nonadiabatic Molecular Dynamics. Chem. Sci. 2024;15(38):15880–15890. doi: 10.1039/D4SC04164J. PubMed DOI PMC
Schütt, K. T. ; Unke, O. T. ; Gastegger, M. In Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra, Proceedings of Machine Learning Research, PMLR, 2021.
Dral P. O., Ge F., Xue B.-X., Hou Y.-F., Pinheiro M., Huang J., Barbatti M.. MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top Curr. Chem. 2021;379(4):27. doi: 10.1007/s41061-021-00339-5. PubMed DOI PMC
Li J., Reiser P., Boswell B. R., Eberhard A., Burns N. Z., Friederich P., Lopez S. A.. Automatic Discovery of Photoisomerization Mechanisms with Nanosecond Machine Learning Photodynamics Simulations. Chem. Sci. 2021;12(14):5302–5314. doi: 10.1039/D0SC05610C. PubMed DOI PMC
Westermayr J., Gastegger M., Vörös D., Panzenboeck L., Joerg F., González L., Marquetand P.. Deep Learning Study of Tyrosine Reveals That Roaming Can. Lead to Photodamage. Nat. Chem. 2022;14(8):914–919. doi: 10.1038/s41557-022-00950-z. PubMed DOI
Shu Y., Varga Z., Parameswaran A. M., Truhlar D. G.. Fitting of Coupled Potential Energy Surfaces via Discovery of Companion Matrices by Machine Intelligence. J. Chem. Theory Comput. 2024;20:7042–7051. doi: 10.1021/acs.jctc.4c00716. PubMed DOI
Gutleb, T. S. ; Barrett, R. ; Westermayr, J. ; Ortner, C. . Parameterizing Intersecting Surfaces via Invariants. 2024, arXiv:2407.03731. arXiv.org e-Printarchive. https://arxiv.org/abs/2407.03731.
Zechmann G., Barbatti M., Lischka H., Pittner J., Bonačić-Koutecký V.. Multiple Pathways in the Photodynamics of a Polar π-Bond: A Case Study of Silaethylene. Chem. Phys. Lett. 2006;418(4–6):377–382. doi: 10.1016/j.cplett.2005.11.015. DOI
Lischka H., Dallos M., Szalay P. G., Yarkony D. R., Shepard R.. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. I. Formalism. J. Chem. Phys. 2004;120(16):7322–7329. doi: 10.1063/1.1668615. PubMed DOI
Dallos M., Lischka H., Shepard R., Yarkony D. R., Szalay P. G.. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. II. Minima on the Crossing Seam: Formaldehyde and the Photodimerization of Ethylene. J. Chem. Phys. 2004;120(16):7330–7339. doi: 10.1063/1.1668631. PubMed DOI
Barbatti M., Bondanza M., Crespo-Otero R., Demoulin B., Dral P. O., Granucci G., Kossoski F., Lischka H., Mennucci B., Mukherjee S., Pederzoli M., Persico M., Pinheiro M. Jr, Pittner J., Plasser F., Sangiogo Gil E., Stojanovic L.. Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. J. Chem. Theory Comput. 2022;18(11):6851–6865. doi: 10.1021/acs.jctc.2c00804. PubMed DOI PMC
Pederzoli M., Pittner J.. A New Approach to Molecular Dynamics with Non-Adiabatic and Spin-Orbit Effects with Applications to QM/MM Simulations of Thiophene and Selenophene. J. Chem. Phys. 2017;146(11):114101. doi: 10.1063/1.4978289. PubMed DOI
Wasif Baig M., Pederzoli M., Kývala M., Cwiklik L., Pittner J.. Theoretical Investigation of the Effect of Alkylation and Bromination on Intersystem Crossing in BODIPY-Based Photosensitizers. J. Phys. Chem. B. 2021;125(42):11617–11627. doi: 10.1021/acs.jpcb.1c05236. PubMed DOI
Bhaskaran-Nair K., Demel O., Šmydke J., Pittner J.. Multireference State-Specific Mukherjee’s Coupled Cluster Method with Noniterative Triexcitations Using Uncoupled Approximation. J. Chem. Phys. 2011;134(15):154106. doi: 10.1063/1.3573373. PubMed DOI
Lang J., Brabec J., Saitow M., Pittner J., Neese F., Demel O.. Perturbative Triples Correction to Domain-Based Local Pair Natural Orbital Variants of Mukherjee’s State Specific Coupled Cluster Method. Phys. Chem. Chem. Phys. 2019;21(9):5022–5038. doi: 10.1039/C8CP03577F. PubMed DOI
Neese F.. The ORCA Program System. WIREs Comput. Mol. Sci. 2012;2(1):73–78. doi: 10.1002/wcms.81. DOI