COLUMBUS─An Efficient and General Program Package for Ground and Excited State Computations Including Spin-Orbit Couplings and Dynamics

. 2025 Jul 17 ; 129 (28) : 6482-6517. [epub] 20250708

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40626850

The COLUMBUS program system provides the tools for performing high-level multireference (MR) computations, including the multireference configuration interaction (MRCI) method and its multireference averaged quadratic coupled cluster (MR-AQCC) extension, allowing computations on a wide range of fascinating atomic and molecular systems, including the treatment of open-shells and complicated excited state phenomena. The inclusion of spin-orbit coupling (SOC) directly within the MRCI step enables the description of systems containing heavy elements, such as lanthanides and actinides, whose properties are strongly influenced by SOC. Analytic energy gradients and nonadiabatic couplings at the correlated MRCI level provide the foundation for a variety of dynamics studies, giving insight into ultrafast photochemistry. New and ongoing method developments in COLUMBUS include the computation of spin densities, improved descriptions of ionic states, enhancements to the AQCC method, and the porting of COLUMBUS to graphical processing units (GPUs). New external interfaces enable an enhanced description of electronic resonances and molecules in strong laser fields. This work highlights these new developments while providing a detailed account of the diverse applications of COLUMBUS in recent years.

Advanced Scientific Computing and Modeling Laboratory Aeronautics Institute of Technology 12228 900 São José dos Campos Brazil

Aix Marseille University CNRS ICR 13397 Marseille France

Chemical Sciences and Engineering Division Argonne National Laboratory Lemont Illinois 60439 United States

Chemistry Department and Institute of Soft Matter Georgetown University Washington District of Columbia 20057 1227 United States

Computational Science Division Argonne National Laboratory 9700 South Cass Avenue Lemont Illinois 60439 United States

Departamento de Física Instituto Tecnológico de Aeronáutica 12228 900 São José dos Campos São Paulo Brazil

Departamento de Química CCEN Universidade Federal da Paraíba 58059 900 João Pessoa Brazil

Department of Chemistry Aeronautics Institute of Technology 12228 900 São José dos Campos Brazil

Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409 United States

Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 United States

Department of Chemistry Gottwald Center for the Sciences University of Richmond Richmond Virginia 23173 United States

Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom

Department of Chemistry Northwestern University Evanston Illinois 60208 United States

Department of Chemistry Temple University 1901 N 13th St Philadelphia Pennsylvania 19122 United States

Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 3000 United States

Department of Mechanical Engineering Texas Tech University Lubbock Texas 79409 United States

Department of Physics Ludwig Maximilian University Theresienstrasse 37 80333 Munich Germany

Faculty of Chemistry Nicolaus Copernicus University in Torun 87100 Torun Poland

Institut Universitaire de France 75231 Paris France

Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic CZ 16610 Prague Czech Republic

Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria

IT4Innovations VŠBTechnical University of Ostrava 708 00 Ostrava Czech Republic

J Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic v v i Dolejškova 3 18223 Praha 8 Czech Republic

Laboratoy of Theoretical Chemistry Institute of Chemistry ELTE Eötvös Loránd University H 1117 Budapest Hungary

Mulliken Center for Theoretical Chemistry University of Bonn 53115 Bonn Germany

National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 United States

Physical Sciences and Computational Division Pacific Northwest National Laboratory Richland Washington 99354 United States

ScaDS AI Dresden Leipzig 04105 Leipzig Germany

Stanford Research Computing Stanford University Stanford California 94305 United States

Vienna Research Platform on Accelerating Photoreaction Discovery University of Vienna 1090 Vienna Austria

Wilhelm Ostwald Institute for Physical and Theoretical Chemistry Leipzig University 04103 Leipzig Germany

Zobrazit více v PubMed

Plasser F., Barbatti M., Aquino A. J. A., Lischka H.. Electronically Excited States and Photodynamics: A Continuing Challenge. Theor. Chem. Acc. 2012;131(1):1073. doi: 10.1007/s00214-011-1073-y. DOI

González L., Escudero D., Serrano-Andrés L.. Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem. 2012;13(1):28–51. doi: 10.1002/cphc.201100200. PubMed DOI

Boggio-Pasqua M., Bearpark M. J., Klene M., Robb M. A.. A Computational Strategy for Geometry Optimization of Ionic and Covalent Excited States, Applied to Butadiene and Hexatriene. J. Chem. Phys. 2004;120(17):7849–7860. doi: 10.1063/1.1690756. PubMed DOI

Borden W. T., Davidson E. R.. The Importance of Including Dynamic Electron Correlation in Ab Initio Calculations. Acc. Chem. Res. 1996;29(2):67–75. doi: 10.1021/ar950134v. DOI

Roos B. O., Andersson K., Fülscher M. P.. Towards an Accurate Molecular Orbital Theory for Excited States: The Benzene Molecule. Chem. Phys. Lett. 1992;192(1):5–13. doi: 10.1016/0009-2614(92)85419-B. DOI

Grimme S., Hansen A.. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem., Int. Ed. 2015;54(42):12308–12313. doi: 10.1002/anie.201501887. PubMed DOI

Shavitt, I. The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations. In The Unitary Group for the Evaluation of Electronic Energy Matrix Elements; Hinze, J. , Ed.; Lecture Notes in Chemistry; Springer: Berlin, 1981; pp 51–99.

Shepard R., Shavitt I., Pitzer R. M., Comeau D. C., Pepper M., Lischka H., Szalay P. G., Ahlrichs R., Brown F. B., Zhao J.-G.. A Progress Report on the Status of the COLUMBUSMRCI Program System. Int. J. Quantum Chem. 1988;34(S22):149–165. doi: 10.1002/qua.560340819. DOI

Plasser, F. ; Lischka, H. . Multi-Reference Configuration Interaction. In Quantum Chemistry and Dynamics of Excited States; Wiley, 2020; Chapter 9, pp 277–297.

Müller T.. Large-Scale Parallel Uncontracted Multireference-Averaged Quadratic Coupled Cluster: The Ground State of the Chromium Dimer Revisited. J. Phys. Chem. A. 2009;113(45):12729–12740. doi: 10.1021/jp905254u. PubMed DOI

Plasser F., Pašalić H., Gerzabek M. H., Libisch F., Reiter R., Burgdörfer J., Müller T., Shepard R., Lischka H.. The Multiradical Character of One- and Two-Dimensional Graphene Nanoribbons. Angew. Chem., Int. Ed. 2013;52(9):2581–2584. doi: 10.1002/anie.201207671. PubMed DOI PMC

Lischka H., Shepard R., Müller T., Szalay P. G., Pitzer R. M., Aquino A. J. A., do Nascimento M. M. A., Barbatti M., Belcher L. T., Blaudeau J.-P.. et al. The Generality of the GUGA MRCI Approach in COLUMBUS for Treating Complex Quantum Chemistry. J. Chem. Phys. 2020;152(13):134110. doi: 10.1063/1.5144267. PubMed DOI

Yabushita S., Zhang Z., Pitzer R. M.. Spin-Orbit Configuration Interaction Using the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-Orbit Operators. J. Phys. Chem. A. 1999;103(29):5791–5800. doi: 10.1021/jp9901242. DOI

Mai S., Müller T., Plasser F., Marquetand P., Lischka H., González L.. Perturbational Treatment of Spin-Orbit Coupling for Generally Applicable High-Level Multi-Reference Methods. J. Chem. Phys. 2014;141(7):074105. doi: 10.1063/1.4892060. PubMed DOI

Langhoff S. R., Davidson E. R.. Configuration Interaction Calculations on the Nitrogen Molecule. Int. J. Quantum Chem. 1974;8(1):61–72. doi: 10.1002/qua.560080106. DOI

Szalay, P. G. Configuration Interaction: Corrections for Size-Consistency. In Encyclopedia of Computational Chemistry; Wiley, 2005.

do Monte S. A., Spada R. F. K., Alves R. L. R., Belcher L., Shepard R., Lischka H., Plasser F.. Quantification of the Ionic Character of Multiconfigurational Wave Functions: The Qat Diagnostic. J. Phys. Chem. A. 2023;127(46):9842–9852. doi: 10.1021/acs.jpca.3c05559. PubMed DOI PMC

Pople J. A., Seeger R., Krishnan R.. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quantum Chem. 2009;12:149–163. doi: 10.1002/qua.560120820. DOI

Davidson E. R., Silver D. W.. Size Consistency in the Dilute Helium Gas Electronic Structure. Chem. Phys. Lett. 1977;52(3):403–406. doi: 10.1016/0009-2614(77)80475-2. DOI

Szalay P. G., Bartlett R. J.. Multi-Reference Averaged Quadratic Coupled-Cluster Method: A Size-Extensive Modification of Multi-Reference CI. Chem. Phys. Lett. 1993;214(5):481–488. doi: 10.1016/0009-2614(93)85670-J. DOI

Aidas K., Angeli C., Bak K. L., Bakken V., Bast R., Boman L., Christiansen O., Cimiraglia R., Coriani S., Dahle P.. et al. The Dalton Quantum Chemistry Program System. WIREs Comput. Mol. Sci. 2014;4(3):269–284. doi: 10.1002/wcms.1172. PubMed DOI PMC

Li Manni G., Fdez, Galván I., Alavi A., Aleotti F., Aquilante F., Autschbach J., Avagliano D., Baiardi A., Bao J. J., Battaglia S.. et al. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J. Chem. Theory Comput. 2023;19(20):6933–6991. doi: 10.1021/acs.jctc.3c00182. PubMed DOI PMC

Aprà E., Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H. J. J., Alexeev Y., Anchell J.. et al. NWChem: Past, Present, and Future. J. Chem. Phys. 2020;152(18):184102. doi: 10.1063/5.0004997. PubMed DOI

Aquilante F., Autschbach J., Carlson R. K., Chibotaru L. F., Delcey M. G., De Vico L., Fdez, Galván I., Ferré N., Frutos L. M., Gagliardi L.. et al. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. Chem. 2016;37(5):506–541. doi: 10.1002/jcc.24221. PubMed DOI

COLUMBUS . an Ab Initio Electronic Structure Program. https://gitlab.com/columbus-program-system/columbus. (accessed June 09, 2025).

Spada R. F. K., Franco M. P., Nieman R., Aquino A. J. A., Shepard R., Plasser F., Lischka H.. Spin-Density Calculation via the Graphical Unitary Group Approach. Mol. Phys. 2023;121(11–12):e2091049. doi: 10.1080/00268976.2022.2091049. DOI

Shavitt I.. Graph Theoretical Concepts for the Unitary Group Approach to the Many-Electron Correlation Problem. Int. J. Quantum Chem. 2009;12(S11):131–148. doi: 10.1002/qua.560120819. DOI

Gidofalvi G., Shepard R.. The Evaluation of Spin-density Matrices within the Graphically Contracted Function Method. Int. J. Quantum Chem. 2009;109(15):3552–3563. doi: 10.1002/qua.22320. DOI

Nakano M., Champagne B.. Theoretical Design of Open-Shell Singlet Molecular Systems for Nonlinear Optics. J. Phys. Chem. Lett. 2015;6(16):3236–3256. doi: 10.1021/acs.jpclett.5b00956. DOI

Messelberger J., Grünwald A., Pinter P., Hansmann M. M., Munz D.. Carbene Derived Diradicaloids – Building Blocks for Singlet Fission? Chem. Sci. 2018;9(28):6107–6117. doi: 10.1039/C8SC01999A. PubMed DOI PMC

Yu C. P., Chowdhury R., Fu Y., Ghosh P., Zeng W., Mustafa T. B. E., Grüne J., Walker L. E., Congrave D. G., Chua X. W., Murto P., Rao A., Sirringhaus H., Plasser F., Grey C. P., Friend R. H., Bronstein H.. Near-Infrared Luminescent Open-Shell π-Conjugated Systems with a Bright Lowest-Energy Zwitterionic Singlet Excited State. Sci. Adv. 2024;10(30):eado3476. doi: 10.1126/sciadv.ado3476. PubMed DOI PMC

Rudebusch G. E., Zafra J. L., Jorner K., Fukuda K., Marshall J. L., Arrechea-Marcos I., Espejo G. L., Ponce Ortiz R., Gómez-García C. J., Zakharov L. N., Nakano M., Ottosson H., Casado J., Haley M. M.. Diindeno-Fusion of an Anthracene as a Design Strategy for Stable Organic Biradicals. Nat. Chem. 2016;8(8):753–759. doi: 10.1038/nchem.2518. PubMed DOI

Nguyen T. D., Ehrenfreund E., Vardeny Z. V.. Spin-Polarized Light-Emitting Diode Based on an Organic Bipolar Spin Valve. Science. 2012;337(6091):204–209. doi: 10.1126/science.1223444. PubMed DOI

Szwarc M.. Some Remarks on the CH2CH2Molecule. Discuss. Faraday Soc. 1947;2:46–49. doi: 10.1039/df9470200046. DOI

Coulson C. A., Craig D. P., Maccoll A., Pullman A.. P-Quinodimethane and Its Diradical. Discuss. Faraday Soc. 1947;2:36–38. doi: 10.1039/df9470200036. DOI

Chagas J. C. V., Milanez B. D., Oliveira V. P., Pinheiro M. Jr, Ferrão L. F. A., Aquino A. J. A., Lischka H., Machado F. B. C.. A Multi-descriptor Analysis of Substituent Effects on the Structure and Aromaticity of Benzene Derivatives: Π-Conjugation versus Charge Effects. J. Comput. Chem. 2024;45(12):863–877. doi: 10.1002/jcc.27296. PubMed DOI

Matasović L., Bronstein H., Friend R. H., Plasser F.. Classification and Quantitative Characterisation of the Excited States of π-Conjugated Diradicals. Faraday Discuss. 2024;254:107–129. doi: 10.1039/D4FD00055B. PubMed DOI

Schulten K., Ohmine I., Karplus M.. Correlation Effects in the Spectra of Polyenes. J. Chem. Phys. 1976;64(11):4422–4441. doi: 10.1063/1.432121. DOI

Kimber, P. ; Plasser, F. . Classification and Analysis of Molecular Excited States. In Comprehensive Computational Chemistry; Elsevier, 2024; pp 55–83.

Plasser F.. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020;152(8):084108. doi: 10.1063/1.5143076. PubMed DOI

Véril M., Scemama A., Caffarel M., Lipparini F., Boggio-Pasqua M., Jacquemin D., Loos P.. QUESTDB: A Database of Highly Accurate Excitation Energies for the Electronic Structure Community. WIREs Comput. Mol. Sci. 2021;11(5):e1517. doi: 10.1002/wcms.1517. DOI

Chen X. K., Kim D., Brédas J. L.. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Acc. Chem. Res. 2018;51(9):2215–2224. doi: 10.1021/acs.accounts.8b00174. PubMed DOI

Kimber P., Plasser F.. Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition. J. Chem. Theory Comput. 2023;19(8):2340–2352. doi: 10.1021/acs.jctc.3c00125. PubMed DOI PMC

Kimber P., Plasser F.. Toward an Understanding of Electronic Excitation Energies beyond the Molecular Orbital Picture. Phys. Chem. Chem. Phys. 2020;22(11):6058–6080. doi: 10.1039/D0CP00369G. PubMed DOI

Snyder J. W., Parrish R. M., Martínez T. J.. α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF to Closely Approximate MS-CASPT2 Potential Energy Surfaces. J. Phys. Chem. Lett. 2017;8(11):2432–2437. doi: 10.1021/acs.jpclett.7b00940. PubMed DOI

Frutos L. M., Andruniów T., Santoro F., Ferré N., Olivucci M.. Tracking the Excited-State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2007;104(19):7764–7769. doi: 10.1073/pnas.0701732104. PubMed DOI PMC

Carlson R. K., Truhlar D. G., Gagliardi L.. Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82. J. Chem. Theory Comput. 2015;11(9):4077–4085. doi: 10.1021/acs.jctc.5b00609. PubMed DOI

Gdanitz R. J., Ahlrichs R.. The Averaged Coupled-Pair Functional (ACPF): A Size-Extensive Modification of MR CI­(SD) Chem. Phys. Lett. 1988;143(5):413–420. doi: 10.1016/0009-2614(88)87388-3. DOI

Szalay P. G., Bartlett R. J.. Approximately Extensive Modifications of the Multireference Configuration Interaction Method: A Theoretical and Practical Analysis. J. Chem. Phys. 1995;103(9):3600–3612. doi: 10.1063/1.470243. DOI

Szalay P. G., Müller T., Gidofalvi G., Lischka H., Shepard R.. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012;112(1):108–181. doi: 10.1021/cr200137a. PubMed DOI

Lischka H., Nachtigallová D., Aquino A. J. A., Szalay P. G., Plasser F., Machado F. B. C., Barbatti M.. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018;118(15):7293–7361. doi: 10.1021/acs.chemrev.8b00244. PubMed DOI

Szalay, P. G. Towards State-Specific Formulation of Multireference Coupled-Cluster Theory: Coupled Electron Pair Approximations (CEPA) Leading to Multireference Configuration Interaction (MR-CI) Type Equations. In Recent Advances in Coupled-Cluster Methods; Bartlett, R. J. , Ed.; World Scientific, 1997; pp 81–123.

Szalay, P. G. Configuration Interaction: Corrections for Size-Consistency. In Encyclopedia of Computational Chemistry; Wiley, 1998.

Szalay P. G., Müller T., Lischka H.. Excitation Energies and Transition Moments by the Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Method. Phys. Chem. Chem. Phys. 2000;2(10):2067–2073. doi: 10.1039/b000224k. DOI

Lischka H., Shepard R., Pitzer R. M., Shavitt I., Dallos M., Müller T., Szalay P. G., Seth M., Kedziora G. S., Yabushita S., Zhang Z.. High-Level Multireference Methods in the Quantum-Chemistry Program System COLUMBUS: Analytic MR-CISD and MR-AQCC Gradients and MR-AQCC-LRT for Excited States, GUGA Spin–Orbit CI and Parallel CI Density. Phys. Chem. Chem. Phys. 2001;3(5):664–673. doi: 10.1039/b008063m. DOI

Horn S., Plasser F., Müller T., Libisch F., Burgdörfer J., Lischka H.. A Comparison of Singlet and Triplet States for One- and Two-Dimensional Graphene Nanoribbons Using Multireference Theory. Theor. Chem. Acc. 2014;133(8):1511. doi: 10.1007/s00214-014-1511-8. DOI

Milanez B. D., Chagas J. C. V., Pinheiro M. Jr, Aquino A. J. A., Lischka H., Machado F. B. C.. Effects on the Aromaticity and on the Biradicaloid Nature of Acenes by the Inclusion of a Cyclobutadiene Linkage. Theor. Chem. Acc. 2020;139(7):113. doi: 10.1007/s00214-020-02624-w. DOI

Müller T., Dallos M., Lischka H., Dubrovay Z., Szalay P. G.. A Systematic Theoretical Investigation of the Valence Excited States of the Diatomic Molecules B 2, C 2, N 2 and O 2. Theor. Chem. Acc.: Theory, Comput., Model. (Theor. Chim. Acta) 2001;105(3):227–243. doi: 10.1007/s002140000210. DOI

Christiansen O., Jorgensen P., Hättig C.. Response Functions from Fourier Component Variational Perturbation Theory Applied to a Time-Averaged Quasienergy. Int. J. Quantum Chem. 1998;68(1):1–52. doi: 10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z. DOI

Dunning T. H.. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989;90(2):1007–1023. doi: 10.1063/1.456153. DOI

Seritan S., Bannwarth C., Fales B. S., Hohenstein E. G., Isborn C. M., Kokkila-Schumacher S. I. L., Li X., Liu F., Luehr N., Snyder J. W., Song C., Titov A. V., Ufimtsev I. S., Wang L., Martínez T. J.. TeraChem: A Graphical Processing Unit-accelerated Electronic Structure Package for large-scale Ab Initio Molecular Dynamics. WIREs Comput. Mol. Sci. 2021;11(2):e1494. doi: 10.1002/wcms.1494. DOI

NVIDIA Corporation . NVIDIA CUDA Fortran Programming Guide 2025. https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.htmlhttps://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide/index.html. (accessed January 31, 2025).

Wilkinson K. A., Sherwood P., Guest M. F., Naidoo K. J.. Acceleration of the GAMESS-UK Electronic Structure Package on Graphical Processing Units. J. Comput. Chem. 2011;32(10):2313–2318. doi: 10.1002/jcc.21815. PubMed DOI

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. . et al. Gaussian 16; Gaussian, Inc.: Wallingford, 2016.

Sun Q., Zhang X., Banerjee S., Bao P., Barbry M., Blunt N. S., Bogdanov N. A., Booth G. H., Chen J., Cui Z.-H., Eriksen J. J., Gao Y., Guo S., Hermann J., Hermes M. R., Koh K., Koval P., Lehtola S., Li Z., Liu J., Mardirossian N., McClain J. D., Motta M., Mussard B., Pham H. Q., Pulkin A., Purwanto W., Robinson P. J., Ronca E., Sayfutyarova E. R., Scheurer M., Schurkus H. F., Smith J. E. T., Sun C., Sun S.-N., Upadhyay S., Wagner L. K., Wang X., White A., Whitfield J. D., Williamson M. J., Wouters S., Yang J., Yu J. M., Zhu T., Berkelbach T. C., Sharma S., Sokolov A. Yu., Chan G. K.-L.. Recent Developments in the PySCF Program Package. J. Chem. Phys. 2020;153(2):024109. doi: 10.1063/5.0006074. PubMed DOI

Roos, B. O. ; Siegbahn, P. E. M. . The Direct Configuration Interaction Method from Molecular Integrals. In Methods of Electronic Structure Theory; Schaefer, H. F., III , Ed.; Springer: New York, 1977; pp 277–318.

Paldus J.. Group Theoretical Approach to the Configuration Interaction and Perturbation Theory Calculations for Atomic and Molecular Systems. J. Chem. Phys. 1974;61(12):5321–5330. doi: 10.1063/1.1681883. DOI

Ahlrichs R., Böhm H., Ehrhardt C., Scharf P., Schiffer H., Lischka H., Schindler M.. Implementation of an Electronic Structure Program System on the CYBER 205. J. Comput. Chem. 1985;6(3):200–208. doi: 10.1002/jcc.540060307. DOI

Werner H.-J., Reinsch E.. The Self-consistent Electron Pairs Method for Multiconfiguration Reference State Functions. J. Chem. Phys. 1982;76(6):3144–3156. doi: 10.1063/1.443357. DOI

Davidson E. R.. The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices. J. Comput. Phys. 1975;17(1):87–94. doi: 10.1016/0021-9991(75)90065-0. DOI

Shepard R., Shavitt I., Lischka H.. Reducing I/O Costs for the Eigenvalue Procedure in Large-scale Configuration Interaction Calculations. J. Comput. Chem. 2002;23(11):1121–1125. doi: 10.1002/jcc.10022. PubMed DOI

Arumainayagam C. R., Garrod R. T., Boyer M. C., Hay A. K., Bao S. T., Campbell J. S., Wang J., Nowak C. M., Arumainayagam M. R., Hodge P. J.. Extraterrestrial Prebiotic Molecules: Photochemistry vs. Radiation Chemistry of Interstellar Ices. Chem. Soc. Rev. 2019;48(8):2293–2314. doi: 10.1039/C7CS00443E. PubMed DOI

Boyer M. C., Rivas N., Tran A. A., Verish C. A., Arumainayagam C. R.. The Role of Low-Energy (≤ 20 EV) Electrons in Astrochemistry. Surf. Sci. 2016;652:26–32. doi: 10.1016/j.susc.2016.03.012. DOI

Swiderek P.. Fundamental Processes in Radiation Damage of DNA. Angew. Chem., Int. Ed. 2006;45(25):4056–4059. doi: 10.1002/anie.200600614. PubMed DOI

Alizadeh E., Orlando T. M., Sanche L.. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66(1):379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI

Arumainayagam C. R., Lee H.-L., Nelson R. B., Haines D. R., Gunawardane R. P.. Low-Energy Electron-Induced Reactions in Condensed Matter. Surf. Sci. Rep. 2010;65(1):1–44. doi: 10.1016/j.surfrep.2009.09.001. DOI

Herbert, J. M. The Quantum Chemistry of Loosely-Bound Electrons. In Reviews in Computational Chemistry; Parrill, A. L. ; Lipkowitz, K. B. , Eds.; Wiley, 2015;Chapter 8, Vol. 28, pp 391–517.

Kawarai Y., Weber Th., Azuma Y., Winstead C., McKoy V., Belkacem A., Slaughter D. S.. Dynamics of the Dissociating Uracil Anion Following Resonant Electron Attachment. J. Phys. Chem. Lett. 2014;5(21):3854–3858. doi: 10.1021/jz501907d. PubMed DOI

Klaiman S., Cederbaum L. S.. Barrierless Single-Electron-Induced cis–rans Isomerization. Angew. Chem. 2015;127(36):10616–10619. doi: 10.1002/ange.201502963. PubMed DOI

Fennimore M. A., Karsili T. N. V., Matsika S.. Mechanisms of H and CO Loss from the Uracil Nucleobase Following Low Energy Electron Irradiation. Phys. Chem. Chem. Phys. 2017;19(26):17233–17241. doi: 10.1039/C7CP01345K. PubMed DOI

Fennimore M. A., Matsika S.. Electronic Resonances of Nucleobases Using Stabilization Methods. J. Phys. Chem. A. 2018;122(16):4048–4057. doi: 10.1021/acs.jpca.8b01523. PubMed DOI

Loupas A., Gorfinkiel J. D.. Shape and Core-Excited Resonances in Electron Scattering from Alanine. J. Chem. Phys. 2019;150(6):064307. doi: 10.1063/1.5081813. PubMed DOI

Thodika M., Mackouse N., Matsika S.. Description of Two-Particle One-Hole Electronic Resonances Using Orbital Stabilization Methods. J. Phys. Chem. A. 2020;124(43):9011–9020. doi: 10.1021/acs.jpca.0c07904. PubMed DOI

Gayvert, J. R. An Open-Source Program for Studying Resonances in Molecules 2021. https://github.com/gayverjr/opencap. (accessed June 08, 2025).

Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press, 2011.

Riss U. V., Meyer H.-D.. Calculation of Resonance Energies and Widths Using the Complex Absorbing Potential Method. J. Phys. B: At., Mol. Opt. Phys. 1993;26(23):4503–4535. doi: 10.1088/0953-4075/26/23/021. DOI

Jagau T.-C., Zuev D., Bravaya K. B., Epifanovsky E., Krylov A. I.. A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach. J. Phys. Chem. Lett. 2014;5(2):310–315. doi: 10.1021/jz402482a. PubMed DOI

Sommerfeld T., Santra R.. Efficient Method to Perform CAP/CI Calculations for Temporary Anions. Int. J. Quantum Chem. 2001;82(5):218–226. doi: 10.1002/qua.1042. DOI

Santra R., Cederbaum L. S.. An Efficient Combination of Computational Techniques for Investigating Electronic Resonance States in Molecules. J. Chem. Phys. 2001;115(15):6853–6861. doi: 10.1063/1.1405117. DOI

Thodika M., Matsika S.. Projected Complex Absorbing Potential Multireference Configuration Interaction Approach for Shape and Feshbach Resonances. J. Chem. Theory Comput. 2022;18(6):3377–3390. doi: 10.1021/acs.jctc.1c01310. PubMed DOI

Thodika, M. Development and Benchmarking of Hermitian and Non-Hermitian Methods for Negative Ion Resonances; Temple University, 2022.

Majety V. P., Zielinski A., Scrinzi A.. Photoionization of Few Electron Systems: A Hybrid Coupled Channels Approach. New J. Phys. 2015;17(6):063002. doi: 10.1088/1367-2630/17/6/063002. DOI

Chundayil H., Majety V. P., Scrinzi A.. The Hybrid Anti-Symmetrized Coupled Channels Method (HaCC) for the TRecX Code. Comput. Phys. Commun. 2024;303:109279. doi: 10.1016/j.cpc.2024.109279. DOI

Majety V. P., Scrinzi A.. Dynamic Exchange in the Strong Field Ionization of Molecules. Phys. Rev. Lett. 2015;115(10):103002. doi: 10.1103/PhysRevLett.115.103002. PubMed DOI

Tao L., Scrinzi A.. Photo-Electron Momentum Spectra from Minimal Volumes: The Time-Dependent Surface Flux Method. New J. Phys. 2012;14(1):013021. doi: 10.1088/1367-2630/14/1/013021. DOI

Majety V. P., Scrinzi A.. Multielectron Effects in Strong-Field Ionization of CO2: Impact on Differential Photoelectron Spectra. Phys. Rev. A. 2017;96(5):053421. doi: 10.1103/PhysRevA.96.053421. DOI

Geim A. K., Novoselov K. S.. The Rise of Graphene. Nat. Mater. 2007;6(3):183–191. doi: 10.1038/nmat1849. PubMed DOI

Nguyen B. H., Nguyen V. H.. Promising Applications of Graphene and Graphene-Based Nanostructures. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016;7(2):023002. doi: 10.1088/2043-6262/7/2/023002. DOI

Gu Y., Qiu Z., Müllen K.. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022;144(26):11499–11524. doi: 10.1021/jacs.2c02491. PubMed DOI PMC

Nieman R., Silva N. J., Aquino A. J. A., Haley M. M., Lischka H.. Interplay of Biradicaloid Character and Singlet/Triplet Energy Splitting for Cis -/ Trans -Diindenoacenes and Related Benzothiophene-Capped Oligomers as Revealed by Extended Multireference Calculations. J. Org. Chem. 2020;85(5):3664–3675. doi: 10.1021/acs.joc.9b03308. PubMed DOI

Kubo T.. Phenalenyl-Based Open-Shell Polycyclic Aromatic Hydrocarbons. Chem. Rec. 2015;15(1):218–232. doi: 10.1002/tcr.201402065. PubMed DOI

Sánchez-Grande A., Urgel J. I., Cahlík A., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mutombo P., Nachtigallová D., Nieman R., Lischka H., de la Torre B., Miranda R., Gröning O., Martín N., Jelínek P., Écija D.. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem., Int. Ed. 2020;59(40):17594–17599. doi: 10.1002/anie.202006276. PubMed DOI PMC

Bettinger H. F.. Electronic Structure of Higher Acenes and Polyacene: The Perspective Developed by Theoretical Analyses. Pure Appl. Chem. 2010;82(4):905–915. doi: 10.1351/PAC-CON-09-10-29. DOI

Ahmed J., Mandal S. K.. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem. Rev. 2022;122(13):11369–11431. doi: 10.1021/acs.chemrev.1c00963. PubMed DOI

Kubo T.. Closed-Shell and Open-Shell Dual Nature of Singlet Diradical Compounds. Pure Appl. Chem. 2023;95(4):363–375. doi: 10.1515/pac-2023-0114. DOI

Takatsuka K., Fueno T., Yamaguchi K.. Distribution of Odd Electrons in Ground-State Molecules. Theor. Chim. Acta. 1978;48(3):175–183. doi: 10.1007/BF00549017. DOI

Head-Gordon M.. Characterizing Unpaired Electrons from the One-Particle Density Matrix. Chem. Phys. Lett. 2003;372(3–4):508–511. doi: 10.1016/S0009-2614(03)00422-6. DOI

Plasser F., Wormit M., Dreuw A.. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism. J. Chem. Phys. 2014;141(2):024106. doi: 10.1063/1.4885819. PubMed DOI

Bauer C. A., Hansen A., Grimme S.. The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. Chem. - Eur. J. 2017;23(25):6150–6164. doi: 10.1002/chem.201604682. PubMed DOI

Nieman R., Carvalho J. R., Jayee B., Hansen A., Aquino A. J. A., Kertesz M., Lischka H.. Polyradical Character Assessment Using Multireference Calculations and Comparison with Density-Functional Derived Fractional Occupation Number Weighted Density Analysis. Phys. Chem. Chem. Phys. 2023;25(40):27380–27393. doi: 10.1039/D3CP03734G. PubMed DOI

Carvalho J. R., Nieman R., Kertesz M., Aquino A. J. A., Hansen A., Lischka H.. Multireference Calculations on Bond Dissociation and Biradical Polycyclic Aromatic Hydrocarbons as Guidance for Fractional Occupation Number Weighted Density Analysis in DFT Calculations. Theor. Chem. Acc. 2024;143(10):69. doi: 10.1007/s00214-024-03143-8. DOI

Staroverov V. N., Davidson E. R.. Distribution of Effectively Unpaired Electrons. Chem. Phys. Lett. 2000;330(1–2):161–168. doi: 10.1016/S0009-2614(00)01088-5. DOI

Tao J., Perdew J. P., Staroverov V. N., Scuseria G. E.. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003;91(14):3–6. doi: 10.1103/PhysRevLett.91.146401. PubMed DOI

Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI

Tsuneda T., Hirao K.. Long-range Correction for Density Functional Theory. WIREs Comput. Mol. Sci. 2014;4(4):375–390. doi: 10.1002/wcms.1178. DOI

Bannwarth C., Ehlert S., Grimme S.. GFN2-XTBAn Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019;15(3):1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended Tight-binding Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021;11(2):e1493. doi: 10.1002/wcms.1493. DOI

Bhatt M. D., Kim H., Kim G.. Various Defects in Graphene: A Review. RSC Adv. 2022;12(33):21520–21547. doi: 10.1039/D2RA01436J. PubMed DOI PMC

Machado F. B. C., Aquino A. J. A., Lischka H.. The Diverse Manifold of Electronic States Generated by a Single Carbon Defect in a Graphene Sheet: Multireference Calculations Using a Pyrene Defect Model. ChemPhysChem. 2014;15(15):3334–3341. doi: 10.1002/cphc.201402304. PubMed DOI

Pinheiro M., Cardoso D. V. V., Aquino A. J. A., Machado F. B. C., Lischka H.. The Characterization of Electronic Defect States of Single and Double Carbon Vacancies in Graphene Sheets Using Molecular Density Functional Theory. Mol. Phys. 2019;117(9–12):1519–1531. doi: 10.1080/00268976.2019.1567848. DOI

Nieman R., Das A., Aquino A. J. A., Amorim R. G., Machado F. B. C., Lischka H.. Single and Double Carbon Vacancies in Pyrene as First Models for Graphene Defects: A Survey of the Chemical Reactivity toward Hydrogen. Chem. Phys. 2017;482:346–354. doi: 10.1016/j.chemphys.2016.08.007. DOI

Nieman R., Oliveira V. P., Jayee B., Adelia A. J. A., Machado F. B. C., Lischka H.. High-Level Multireference Investigations on the Electronic States in Single-Vacancy (SV) Graphene Defects Using a Pyrene-SV Model. J. Phys. Chem. A. 2023;127(40):8287–8296. doi: 10.1021/acs.jpca.3c04099. PubMed DOI

Hariharan P. C., Pople J. A.. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta. 1973;28(3):213–222. doi: 10.1007/BF00533485. DOI

Shu C., Yang Z., Rajca A.. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem. Rev. 2023;123(20):11954–12003. doi: 10.1021/acs.chemrev.3c00406. PubMed DOI

Pozo I., Bogani L.. A Perspective on Radicaloid Conjugated Polycyclic Hydrocarbons. Trends Chem. 2024;6(10):581–595. doi: 10.1016/j.trechm.2024.08.005. DOI

Zeng W., Wu J.. Open-Shell Graphene Fragments. Chem. 2021;7(2):358–386. doi: 10.1016/j.chempr.2020.10.009. DOI

Yu H., Jing Y., Heine T.. Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices. Acc. Chem. Res. 2025;58(1):61–72. doi: 10.1021/acs.accounts.4c00557. PubMed DOI PMC

Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C. A., Müllen K., Fasel R., Feng X., Ruffieux P.. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141(27):10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI

Sanz-Rodrigo J., Ricci G., Olivier Y., Sancho-García J. C.. Negative Singlet–Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. J. Phys. Chem. A. 2021;125(2):513–522. doi: 10.1021/acs.jpca.0c08029. PubMed DOI

Martínez-Carracedo G., Oroszlány L., García-Fuente A., Szunyogh L., Ferrer J.. Electrically Driven Singlet-Triplet Transition in Triangulene Spin-1 Chains. Phys. Rev. B. 2023;107(3):035432. doi: 10.1103/PhysRevB.107.035432. DOI

Su J., Telychko M., Song S., Lu J.. Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization. Angew. Chem., Int. Ed. 2020;59(20):7658–7668. doi: 10.1002/anie.201913783. PubMed DOI

Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Su J., Fan W., Mutombo P., Peng X., Song S., Ondráček M., Golub P., Brabec J., Veis L., Telychko M., Jelínek P., Wu J., Lu J.. On-Surface Synthesis and Characterization of [7]­Triangulene Quantum Ring. Nano Lett. 2021;21(1):861–867. doi: 10.1021/acs.nanolett.0c04627. PubMed DOI

Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C. A., Fasel R., Feng X., Ruffieux P.. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem., Int. Ed. 2020;59(29):12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC

Yu H., Heine T.. Magnetic Coupling Control in Triangulene Dimers. J. Am. Chem. Soc. 2023;145(35):19303–19311. doi: 10.1021/jacs.3c05178. PubMed DOI PMC

Yu H., Sun J., Heine T.. Predicting Magnetic Coupling and Spin-Polarization Energy in Triangulene Analogues. J. Chem. Theory Comput. 2023;19(12):3486–3497. doi: 10.1021/acs.jctc.3c00175. PubMed DOI

Saleem Y., Steenbock T., Alhadi E. R. J., Pasek W., Bester G., Potasz P.. Superexchange Mechanism in Coupled Triangulenes Forming Spin-1 Chains. Nano Lett. 2024;24(24):7417–7423. doi: 10.1021/acs.nanolett.4c01604. PubMed DOI PMC

Weng T., Xu Z., Li K., Guo Y., Chen X., Li Z., Sun Z.. 1,1′-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J. Am. Chem. Soc. 2024;146(38):26454–26465. doi: 10.1021/jacs.4c09627. PubMed DOI

Ortiz R., Catarina G., Fernández-Rossier J.. Theory of Triangulene Two-Dimensional Crystals. 2d Mater. 2023;10(1):015015. doi: 10.1088/2053-1583/aca4e2. DOI

Ovchinnikov A. A.. Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds - (Do Organic Ferromagnetics Exist?) Theor Chim Acta. 1978;47(4):297–304. doi: 10.1007/BF00549259. DOI

Lieb E. H.. Two Theorems on the Hubbard Model. Phys. Rev. Lett. 1989;62(10):1201–1204. doi: 10.1103/PhysRevLett.62.1201. PubMed DOI

Itkis M. E., Chi X., Cordes A. W., Haddon R. C.. Magneto-Opto-Electronic Bistability in a Phenalenyl-Based Neutral Radical. Science. 2002;296(5572):1443–1445. doi: 10.1126/science.1071372. PubMed DOI

Yang Y., Blacque O., Sato S., Juríček M.. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop. Angew. Chem., Int. Ed. 2021;60(24):13529–13535. doi: 10.1002/anie.202101792. PubMed DOI PMC

Pal S. K., Itkis M. E., Tham F. S., Reed R. W., Oakley R. T., Haddon R. C.. Resonating Valence-Bond Ground State in a Phenalenyl-Based Neutral Radical Conductor. Science. 2005;309(5732):281–284. doi: 10.1126/science.1112446. PubMed DOI

Pariyar A., Vijaykumar G., Bhunia M., Dey S. Kr., Singh S. K., Kurungot S., Mandal S. K.. Switching Closed-Shell to Open-Shell Phenalenyl: Toward Designing Electroactive Materials. J. Am. Chem. Soc. 2015;137(18):5955–5960. doi: 10.1021/jacs.5b00272. PubMed DOI

Morita Y., Aoki T., Fukui K., Nakazawa S., Tamaki K., Suzuki S., Fuyuhiro A., Yamamoto K., Sato K., Shiomi D., Naito A., Takui T., Nakasuji K.. A New Trend in Phenalenyl Chemistry: A Persistent Neutral Radical, 2,5,8-Tri-Tert-Butyl-1,3-Diazaphenalenyl, and the Excited Triplet State of the Gablesyn-Dimer in the Crystal of Column Motif. Angew. Chem., Int. Ed. 2002;41(10):1793–1796. doi: 10.1002/1521-3773(20020517)41:10<1793::AID-ANIE1793>3.0.CO;2-G. PubMed DOI

Das A., Müller T., Plasser F., Lischka H.. Polyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study. J. Phys. Chem. A. 2016;120(9):1625–1636. doi: 10.1021/acs.jpca.5b12393. PubMed DOI PMC

Hehre W. J., Ditchfield R., Pople J. A.. Self Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972;56(5):2257–2261. doi: 10.1063/1.1677527. DOI

Grimme S.. Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction. J. Comput. Chem. 2006;27(15):1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Sirianni D. A., Song X., Wairegi S., Wang E. B., Mendoza-Gomez S. A., Luxon A., Zimmerley M., Nussdorf A., Filatov M., Hoffmann R., Parish C. A.. Variations on the Bergman Cyclization Theme: Electrocyclizations of Ionic Penta-, Hepta-, and Octadiynes. J. Am. Chem. Soc. 2023;145(39):21408–21418. doi: 10.1021/jacs.3c06691. PubMed DOI PMC

Jones R. R., Bergman R. G.. P-Benzyne. Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure. J. Am. Chem. Soc. 1972;94(2):660–661. doi: 10.1021/ja00757a071. DOI

Church D. F., Pryor W. A.. Free-Radical Chemistry of Cigarette Smoke and Its Toxicological Implications. Environ. Health Perspect. 1985;64:111–126. doi: 10.1289/ehp.8564111. PubMed DOI PMC

Russell K. E., Tobolsky A. V.. Diradicals in Solution: Role in Polymerization. J. Am. Chem. Soc. 1954;76(2):395–399. doi: 10.1021/ja01631a024. DOI

Slipchenko L. V., Krylov A. I.. Singlet-Triplet Gaps in Diradicals by the Spin-Flip Approach: A Benchmark Study. J. Chem. Phys. 2002;117(10):4694–4708. doi: 10.1063/1.1498819. DOI

Wang E. B., Parish C. A., Lischka H.. An Extended Multireference Study of the Electronic States of Para -Benzyne. J. Chem. Phys. 2008;129(4):044306. doi: 10.1063/1.2955744. PubMed DOI

Vu K., Pandian J., Zhang B., Annas C., Parker A. J., Mancini J. S., Wang E. B., Saldana-Greco D., Nelson E. S., Springsted G., Lischka H., Plasser F., Parish C. A.. Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Study of the Geometries and Energies for Ortho -, Meta - and Para -Benzyne. J. Phys. Chem. A. 2024;128(37):7816–7829. doi: 10.1021/acs.jpca.4c04099. PubMed DOI PMC

Scott T., Nieman R., Luxon A., Zhang B., Lischka H., Gagliardi L., Parish C. A.. A Multireference Ab Initio Study of the Diradical Isomers of Pyrazine. J. Phys. Chem. A. 2019;123(10):2049–2057. doi: 10.1021/acs.jpca.8b12440. PubMed DOI

Pandian J., Vu K., Muya J. T., Parker A., Ancajas C. M. F., Saldana-Greco D., Yewer T., Parish C.. A Highly Correlated, Multireference Study of the Lowest Lying Singlet and Triplet States of the Four Thiophene Diradicals. J. Comput. Chem. 2025;46(3):e70044. doi: 10.1002/jcc.70044. PubMed DOI PMC

Okamoto K., Kitagawa T., Takeuchi K., Komatsu K., Takahashi K.. Isolation of a Hydrocarbon Salt and Preparation of a Hydrocarbon Which Heterolyses to a Carbocation and a Carbanion. J. Chem. Soc. Chem. Commun. 1985;(3):173–174. doi: 10.1039/c39850000173. DOI

Okamoto K., Kitagawa T., Takeuchi K., Komatsu K., Miyabo A.. A Hydrocarbon Existing Uniquely in Solution: A Heterolytically Dissociative Hydrocarbon That Produces the Corresponding Hydrocarbon Salt by Crystallization. J. Chem. Soc. Chem. Commun. 1988;(14):923–924. doi: 10.1039/c39880000923. DOI

Kitagawa T., Tanaka T., Murakita H., Nishikawa A., Takeuchi K.. Reaction of Cyclopropenylium Ions with the Tert-Butyl-C60 Anion: Carbocation–Carbanion Coordination vs Salt Formation. Tetrahedron. 2001;57(17):3537–3547. doi: 10.1016/S0040-4020(01)00236-8. DOI

Tanaka T., Kitagawa T., Komatsu K., Takeuchi K.. Synthesis of a Hydrocarbon Salt Having a Fullerene Framework. J. Am. Chem. Soc. 1997;119(39):9313–9314. doi: 10.1021/ja970006x. DOI

Ventura E., Alves R. L. R., do Monte S. A.. The Kinetics of Three Coupled Irreversible Elementary Reactions: Two Parallel Mixed Second Order Reactions Followed by a First Order Reaction. J. Math. Chem. 2024;62(4):922–935. doi: 10.1007/s10910-024-01580-1. DOI

Ventura E., Rodrigues G. P., Leitão E. F. V., do Monte S. A.. Theoretical Study of an Authentic Hydrocarbon Ion Pair. ACS Omega. 2024;9(32):34981–34989. doi: 10.1021/acsomega.4c04914. PubMed DOI PMC

Alves R. L. R., Leitão E. F. V., Ventura E., do Monte S. A.. A Genuine Hydrocarbon Ion Pair More Stable Than Its Covalent Counterpart. A Computational Study. J. Comput. Chem. 2025;46(8):e70079. doi: 10.1002/jcc.70079. PubMed DOI

Kolomnikova G. D., Parnes Z. N.. Advances in the Chemistry of the Tropylium Ion. Russ. Chem. Rev. 1967;36(10):735–753. doi: 10.1070/RC1967v036n10ABEH001768. DOI

Koenig T., Chang J. C.. Helium­(I) Photoelectron Spectrum of Tropyl Radical. J. Am. Chem. Soc. 1978;100(7):2240–2242. doi: 10.1021/ja00475a050. DOI

McDonald R. N., Bianchina E. J., Tung C. C.. Electron Photodetachment of Cyclopentadienylidene Anion Radical in a Flowing Afterglow Apparatus: EA and.DELTA.Hf.Degree. of Cyclopentadienylidene. J. Am. Chem. Soc. 1991;113(19):7115–7121. doi: 10.1021/ja00019a005. DOI

Silva A. J. F. W. H. de S., Rodrigues G. P., Ventura E., do Monte S. A.. Photodissociation and Formation of an Ion-pair in CH2 FCl (HCFC-31) J. Comput. Chem. 2024;45(8):476–486. doi: 10.1002/jcc.27257. PubMed DOI

Bezerra M. G., Leitão E. F. V., de Andrade R. B., Ventura E., do Monte S. A.. Photochemistry of Monohydrated Chloromethane: Formation of Free and Hydrated Cl – and CH 3 + Ions from a Solvent-Shared Semi-Ion-Pair. J. Phys. Chem. A. 2021;125(39):8603–8614. doi: 10.1021/acs.jpca.1c05704. PubMed DOI

Ventura E., do Monte S. A.. Hydrogen-Bonded Contact Ion Pair in Gaseous Chloroethane: A Multi-Reference Configuration Interaction with Singles and Doubles (MR-CISD) Study Including Extensivity Corrections. Theor. Chem. Acc. 2020;139(3):49. doi: 10.1007/s00214-020-2561-8. DOI

de Medeiros V. C., de Andrade R. B., Rodrigues G. P., Bauerfeldt G. F., Ventura E., Barbatti M., do Monte S. A.. Photochemistry of CF 3 Cl: Quenching of Charged Fragments Is Caused by Nonadiabatic Effects. J. Chem. Theory Comput. 2018;14(9):4844–4855. doi: 10.1021/acs.jctc.8b00457. PubMed DOI

de Medeiros V. C., de Andrade R. B., Leitão E. F. V., Ventura E., Bauerfeldt G. F., Barbatti M., do Monte S. A.. Photochemistry of CH 3 Cl: Dissociation and CH···Cl Hydrogen Bond Formation. J. Am. Chem. Soc. 2016;138(1):272–280. doi: 10.1021/jacs.5b10573. PubMed DOI

Gagliardi L., Roos B. O.. Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quintuple Bond. Nature. 2005;433(7028):848–851. doi: 10.1038/nature03249. PubMed DOI

Roos B. O., Malmqvist P.-Å., Gagliardi L.. Exploring the Actinide–Actinide Bond: Theoretical Studies of the Chemical Bond in Ac 2, Th 2, Pa 2, and U 2 . J. Am. Chem. Soc. 2006;128(51):17000–17006. doi: 10.1021/ja066615z. PubMed DOI

Knecht S., Jensen H. J. Aa., Saue T.. Relativistic Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quadruple Bond. Nat. Chem. 2019;11(1):40–44. doi: 10.1038/s41557-018-0158-9. PubMed DOI

Peterson K. A.. Correlation Consistent Basis Sets for Actinides. I. The Th and U Atoms. J. Chem. Phys. 2015;142(7):074105. doi: 10.1063/1.4907596. PubMed DOI

Aquilante F., Autschbach J., Baiardi A., Battaglia S., Borin V. A., Chibotaru L. F., Conti I., De Vico L., Delcey M., Galván I. F., Ferré N., Freitag L., Garavelli M., Gong X., Knecht S., Larsson E. D., Lindh R., Lundberg M., Malmqvist PÅ., Nenov A., Norell J., Odelius M., Olivucci M., Pedersen T. B., Pedraza-González L., Phung Q. M., Pierloot K., Reiher M., Schapiro I., Segarra-Martí J., Segatta F., Seijo L., Sen S., Sergentu D.-C., Stein C. J., Ungur L., Vacher M., Valentini A., Veryazov V.. Modern Quantum Chemistry with [Open]­Molcas. J. Chem. Phys. 2020;152(21):214117. doi: 10.1063/5.0004835. PubMed DOI

Glendening E. D., Landis C. R., Weinhold F.. Natural Bond Orbital Methods. WIREs Comput. Mol. Sci. 2012;2(1):42. doi: 10.1002/wcms.51. DOI

Glendening, E. D. ; Badenhoop, J. K. ; Reed, A. E. ; Carpenter, J. E. ; Bohmann, J. A. ; Morales, C. M. ; Karafiloglou, P. ; Landis, C. R. ; Weinhold, F. . NBO 7.0. Madison, Wisconsin. 2018.

Zaichenko, A. ; Autschbach, J. . MolcasTo47 2024. https://github.com/jautschbach/molcasto47. (accessed March 24, 2025).

Ciborowski S. M., Mitra A., Harris R. M., Liu G., Sharma P., Khetrapal N., Blankenhorn M., Gagliardi L., Bowen K. H.. Metal–Metal Bonding in Actinide Dimers: U2 and U2- J. Am. Chem. Soc. 2021;143(41):17023–17028. doi: 10.1021/jacs.1c06417. PubMed DOI

Wiberg K. B.. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron. 1968;24(3):1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI

Mayer I.. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007;28(1):204–221. doi: 10.1002/jcc.20494. PubMed DOI

Khokhlov D., Belov A.. Toward an Accurate Ab Initio Description of Low-Lying Singlet Excited States of Polyenes. J. Chem. Theory Comput. 2021;17(7):4301–4315. doi: 10.1021/acs.jctc.0c01293. PubMed DOI

Müller T., Dallos M., Lischka H.. The Ethylene 1 1B1u V State Revisited. J. Chem. Phys. 1999;110(15):7176–7184. doi: 10.1063/1.478621. DOI

Dallos M., Lischka H.. A Systematic Theoretical Investigation of the Lowest Valence- and Rydberg-Excited Singlet States of Trans-Butadiene. The Character of the 1 1Bu­(V) State Revisited. Theor. Chem. Acc. 2004;112(1):16–26. doi: 10.1007/s00214-003-0557-9. DOI

Chagas J. C. V., F dos Santos L. G., Nieman R., Aquino A. J. A., do Monte S. A., Plasser F., Szalay P. G., Lischka H., Machado F. B. C.. Low-Lying Excited States of Linear All- Trans Polyenes: The σ–π Electron Correlation and the Description of Ionic States. Phys. Chem. Chem. Phys. 2025;27(15):7916–7928. doi: 10.1039/D5CP00339C. PubMed DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.. Basis-Set Convergence in Correlated Calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286(3–4):243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI

Kossoski F., Boggio-Pasqua M., Loos P.-F., Jacquemin D.. Reference Energies for Double Excitations: Improvement and Extension. J. Chem. Theory Comput. 2024;20(13):5655–5678. doi: 10.1021/acs.jctc.4c00410. PubMed DOI

Schreiber M., Silva-Junior M. R., Sauer S. P. A., Thiel W.. Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008;128(13):134110. doi: 10.1063/1.2889385. PubMed DOI

Angeli C.. On the Nature of the π → Π* Ionic Excited States: The V State of Ethene as a Prototype. J. Comput. Chem. 2009;30(8):1319–1333. doi: 10.1002/jcc.21155. PubMed DOI

Brédas J.-L., Norton J. E., Cornil J., Coropceanu V.. Molecular Understanding of Organic Solar Cells: The Challenges. Acc. Chem. Res. 2009;42(11):1691–1699. doi: 10.1021/ar900099h. PubMed DOI

Low J., Yu J., Jaroniec M., Wageh S., Al-Ghamdi A. A.. Heterojunction Photocatalysts. Adv. Mater. 2017;29(20):1601694. doi: 10.1002/adma.201601694. PubMed DOI

Shao X., Aquino A. J. A., Otyepka M., Nachtigallová D., Lischka H.. Tuning the UV Spectrum of PAHs by Means of Different N-Doping Types Taking Pyrene as Paradigmatic Example: Categorization: Via Valence Bond Theory and High-Level Computational Approaches. Phys. Chem. Chem. Phys. 2020;22(38):22003–22015. doi: 10.1039/D0CP02688C. PubMed DOI

Pinheiro M., Ferrão L. F. A., Bettanin F., Aquino A. J. A., Machado F. B. C., Lischka H.. How to Efficiently Tune the Biradicaloid Nature of Acenes by Chemical Doping with Boron and Nitrogen. Phys. Chem. Chem. Phys. 2017;19(29):19225–19233. doi: 10.1039/C7CP03198J. PubMed DOI

Pimentel J. V. M., Chagas J. C. V., Pinheiro M., Aquino A. J. A., Lischka H., Machado F. B. C.. Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials. J. Phys. Chem. A. 2025;129(2):470–480. doi: 10.1021/acs.jpca.4c06481. PubMed DOI

Zeng T., Mellerup S. K., Yang D., Wang X., Wang S., Stamplecoskie K.. Identifying (BN) 2 -Pyrenes as a New Class of Singlet Fission Chromophores: Significance of Azaborine Substitution. J. Phys. Chem. Lett. 2018;9(11):2919–2927. doi: 10.1021/acs.jpclett.8b01226. PubMed DOI

Pinheiro M., Machado F. B. C., Plasser F., Aquino A. J. A., Lischka H.. A Systematic Analysis of Excitonic Properties to Seek Optimal Singlet Fission: The BN-Substitution Patterns in Tetracene. J. Mater. Chem. C Mater. 2020;8(23):7793–7804. doi: 10.1039/C9TC06581D. DOI

Hachmann J., Dorando J. J., Avilés M., Chan G. K.-L.. The Radical Character of the Acenes: A Density Matrix Renormalization Group Study. J. Chem. Phys. 2007;127(13):134309. doi: 10.1063/1.2768362. PubMed DOI

Torres A. E., Guadarrama P., Fomine S.. Multiconfigurational Character of the Ground States of Polycyclic Aromatic Hydrocarbons. A Systematic Study. J. Mol. Model. 2014;20(5):2208. doi: 10.1007/s00894-014-2208-6. PubMed DOI

dos Santos L. G. F., Chagas J. C. V., Ferrão L. F. A., Aquino A. J. A., Nieman R., Lischka H., Machado F. B. C.. Tuning Aromaticity, Stability and Radicaloid Character of Periacenes by Chemical BN Doping. J. Comput. Chem. 2025;46(3):e70039. doi: 10.1002/jcc.70039. PubMed DOI

Plasser F., Lischka H.. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem. Theory Comput. 2012;8(8):2777–2789. doi: 10.1021/ct300307c. PubMed DOI

F dos Santos L. G., Chagas J. C. V., Nieman R., Aquino A. J. A., Machado F. B. C., Lischka H.. Charge Transfer within Excited States of Boron/Nitrogen Doped Polycyclic Aromatic Hydrocarbons. Phys. Chem. Chem. Phys. 2025;27(22):11558–11569. doi: 10.1039/D5CP00618J. PubMed DOI

do Casal M. T., Toldo J. M., Barbatti M., Plasser F.. Classification of Doubly Excited Molecular Electronic States. Chem. Sci. 2023;14(15):4012–4026. doi: 10.1039/D2SC06990C. PubMed DOI PMC

Krauss M., Stevens W. J.. Effective Potentials in Molecular Quantum Chemistry. Annu. Rev. Phys. Chem. 1984;35(1):357–385. doi: 10.1146/annurev.pc.35.100184.002041. DOI

Dolg M., Stoll H.. Chapter 152 Electronic Structure Calculations for Molecules Containing Lanthanide Atoms. Handb. Phys. Chem. Rare Earths. 1996;22:607–729. doi: 10.1016/S0168-1273(96)22009-4. DOI

Heß B. A., Marian C. M., Wahlgren U., Gropen O.. A Mean-Field Spin-Orbit Method Applicable to Correlated Wavefunctions. Chem. Phys. Lett. 1996;251(5–6):365–371. doi: 10.1016/0009-2614(96)00119-4. DOI

Zhang, Z. Quantum Algorithm for a Convergent Series of Approximations towards the Exact Solution of the Lowest Eigenstates of a Hamiltonian. 2020, arXiv:2009.03537. arXiv.org e-Printarchive. https://arxiv.org/abs/2009.03537.

Veis L., Višňák J., Fleig T., Knecht S., Saue T., Visscher L., Pittner J.. Relativistic Quantum Chemistry on Quantum Computers. Phys. Rev. A. 2012;85(3):030304. doi: 10.1103/PhysRevA.85.030304. DOI

Matsika S., Zhang Z., Brozell S. R., Blaudeau J.-P., Wang Q., Pitzer R. M.. Electronic Structure and Spectra of Actinyl Ions. J. Phys. Chem. A. 2001;105(15):3825–3828. doi: 10.1021/jp003085z. DOI

Tyagi R., Zhang Z., Pitzer R. M.. Electronic Spectrum of the UO and UO + Molecules. J. Phys. Chem. A. 2014;118(50):11758–11767. doi: 10.1021/jp505722y. PubMed DOI

Zhang Z., Pitzer R. M.. Application of Relativistic Quantum Chemistry to the Electronic Energy Levels of the Uranyl Ion. J. Phys. Chem. A. 1999;103(34):6880–6886. doi: 10.1021/jp991867q. DOI

Matsika S., Pitzer R. M.. Electronic Spectrum of the NpO2 2+ and NpO2 + Ions. J. Phys. Chem. A. 2000;104(17):4064–4068. doi: 10.1021/jp993767q. DOI

Yang T., Tyagi R., Zhang Z., Pitzer R. M.. Configuration Interaction Studies on the Electronic States of the CUO Molecule. Mol. Phys. 2009;107(8–12):1193–1195. doi: 10.1080/00268970902804534. DOI

Li J., Bursten B. E., Liang B., Andrews L.. Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices. Science. 2002;295(5563):2242–2245. doi: 10.1126/science.1069342. PubMed DOI

Andrews L., Liang B., Li J., Bursten B. E.. Ground-State Reversal by Matrix Interaction: Electronic States and Vibrational Frequencies of Cuo in Solid Argon and Neon. Angew. Chem., Int. Ed. 2000;39(24):4565–4567. doi: 10.1002/1521-3773(20001215)39:24<4565::AID-ANIE4565>3.0.CO;2-R. PubMed DOI

Barbatti M., Lischka H.. Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum-Classical Dynamics. J. Am. Chem. Soc. 2008;130(21):6831–6839. doi: 10.1021/ja800589p. PubMed DOI

Sellner B., Barbatti M., Müller T., Domcke W., Lischka H.. Ultrafast Non-Adiabatic Dynamics of Ethylene Including Rydberg States. Mol. Phys. 2013;111(16–17):2439–2450. doi: 10.1080/00268976.2013.813590. DOI

Mukherjee S., Mattos R. S., Toldo J. M., Lischka H., Barbatti M.. Prediction Challenge: Simulating Rydberg Photoexcited Cyclobutanone with Surface Hopping Dynamics Based on Different Electronic Structure Methods. J. Chem. Phys. 2024;160(15):154306. doi: 10.1063/5.0203636. PubMed DOI

Crespo-Otero R., Barbatti M.. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem. Rev. 2018;118(15):7026–7068. doi: 10.1021/acs.chemrev.7b00577. PubMed DOI

Persico M., Granucci G.. An Overview of Nonadiabatic Dynamics Simulations Methods, with Focus on the Direct Approach versus the Fitting of Potential Energy Surfaces. Theor. Chem. Acc. 2014;133(9):1526. doi: 10.1007/s00214-014-1526-1. DOI

Pittner J., Lischka H., Barbatti M.. Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009;356(1–3):147–152. doi: 10.1016/j.chemphys.2008.10.013. DOI

Plasser F., Ruckenbauer M., Mai S., Oppel M., Marquetand P., González L.. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps. J. Chem. Theory Comput. 2016;12(3):1207–1219. doi: 10.1021/acs.jctc.5b01148. PubMed DOI PMC

do Casal M. T., Toldo J. M., Pinheiro M. Jr., Barbatti M.. Fewest Switches Surface Hopping with Baeck-An Couplings. Open Res. Europe. 2021;1:49. doi: 10.12688/openreseurope.13624.1. PubMed DOI PMC

Kossoski F., Barbatti M.. Nonadiabatic Dynamics in Multidimensional Complex Potential Energy Surfaces. Chem. Sci. 2020;11(36):9827–9835. doi: 10.1039/D0SC04197A. PubMed DOI PMC

Martyka M., Zhang L., Ge F., Hou Y.-F., Jankowska J., Barbatti M., Dral P. O.. Charting Electronic-State Manifolds across Molecules with Multi-State Learning and Gap-Driven Dynamics via Efficient and Robust Active Learning. npj Comput. Mater. 2025;11(1):132. doi: 10.1038/s41524-025-01636-z. PubMed DOI PMC

Westermayr J., Gastegger M., Menger M. F. S. J., Mai S., González L., Marquetand P.. Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations. Chem. Sci. 2019;10(35):8100–8107. doi: 10.1039/C9SC01742A. PubMed DOI PMC

Westermayr J., Marquetand P.. Machine Learning for Electronically Excited States of Molecules. Chem. Rev. 2021;121(16):9873–9926. doi: 10.1021/acs.chemrev.0c00749. PubMed DOI PMC

Dral P. O., Barbatti M.. Molecular Excited States through a Machine Learning Lens. Nat. Rev. Chem. 2021;5(6):388–405. doi: 10.1038/s41570-021-00278-1. PubMed DOI

Li J., Lopez S. A.. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Acc. Chem. Res. 2022;55(14):1972–1984. doi: 10.1021/acs.accounts.2c00288. PubMed DOI

Mai S., Marquetand P., González L.. A General Method to Describe Intersystem Crossing Dynamics in Trajectory Surface Hopping. Int. J. Quantum Chem. 2015;115(18):1215–1231. doi: 10.1002/qua.24891. DOI

Mai S., Marquetand P., González L.. Nonadiabatic Dynamics: The SHARC Approach. WIREs Comput. Mol. Sci. 2018;8(6):e1370. doi: 10.1002/wcms.1370. PubMed DOI PMC

Mai, S. ; Bachmair, B. ; Gagliardi, L. ; Gallmetzer, H. G. ; Grünewald, L. ; Hennefarth, M. R. ; Høyer, N. M. ; Korsaye, F. A. ; Mausenberger, S. ; Oppel, M. ; Piteša, T. ; Polonius, S. ; Sangiogo Gil, E. ; Shu, Y. ; Singer, N. K. ; Tiefenbacher, M. X. ; Truhlar, D. G. ; Vörös, D. ; Zhang, L. ; González, L. . SHARC4.0: Surface Hopping Including Arbitrary Couplings – Program Package for Non-Adiabatic Dynamics 2025. https://sharc-md.org/. (accessed June 17, 2025).

Richter M., Marquetand P., González-Vázquez J., Sola I., González L.. SHARC: Ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011;7(5):1253–1258. doi: 10.1021/ct1007394. PubMed DOI

Westermayr J., Gastegger M., Marquetand P.. Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics. J. Phys. Chem. Lett. 2020;11(10):3828–3834. doi: 10.1021/acs.jpclett.0c00527. PubMed DOI PMC

Schütt K. T., Sauceda H. E., Kindermans P.-J., Tkatchenko A., Müller K.-R.. SchNet – A Deep Learning Architecture for Molecules and Materials. J. Chem. Phys. 2018;148(24):241722. doi: 10.1063/1.5019779. PubMed DOI

Schütt K. T., Kessel P., Gastegger M., Nicoli K. A., Tkatchenko A., Müller K.-R.. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 2019;15(1):448–455. doi: 10.1021/acs.jctc.8b00908. PubMed DOI

Mausenberger S., Müller C., Tkatchenko A., Marquetand P., González L., Westermayr J.. S pai NN: Equivariant Message Passing for Excited-State Nonadiabatic Molecular Dynamics. Chem. Sci. 2024;15(38):15880–15890. doi: 10.1039/D4SC04164J. PubMed DOI PMC

Schütt, K. T. ; Unke, O. T. ; Gastegger, M. In Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra, Proceedings of Machine Learning Research, PMLR, 2021.

Dral P. O., Ge F., Xue B.-X., Hou Y.-F., Pinheiro M., Huang J., Barbatti M.. MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top Curr. Chem. 2021;379(4):27. doi: 10.1007/s41061-021-00339-5. PubMed DOI PMC

Li J., Reiser P., Boswell B. R., Eberhard A., Burns N. Z., Friederich P., Lopez S. A.. Automatic Discovery of Photoisomerization Mechanisms with Nanosecond Machine Learning Photodynamics Simulations. Chem. Sci. 2021;12(14):5302–5314. doi: 10.1039/D0SC05610C. PubMed DOI PMC

Westermayr J., Gastegger M., Vörös D., Panzenboeck L., Joerg F., González L., Marquetand P.. Deep Learning Study of Tyrosine Reveals That Roaming Can. Lead to Photodamage. Nat. Chem. 2022;14(8):914–919. doi: 10.1038/s41557-022-00950-z. PubMed DOI

Shu Y., Varga Z., Parameswaran A. M., Truhlar D. G.. Fitting of Coupled Potential Energy Surfaces via Discovery of Companion Matrices by Machine Intelligence. J. Chem. Theory Comput. 2024;20:7042–7051. doi: 10.1021/acs.jctc.4c00716. PubMed DOI

Gutleb, T. S. ; Barrett, R. ; Westermayr, J. ; Ortner, C. . Parameterizing Intersecting Surfaces via Invariants. 2024, arXiv:2407.03731. arXiv.org e-Printarchive. https://arxiv.org/abs/2407.03731.

Zechmann G., Barbatti M., Lischka H., Pittner J., Bonačić-Koutecký V.. Multiple Pathways in the Photodynamics of a Polar π-Bond: A Case Study of Silaethylene. Chem. Phys. Lett. 2006;418(4–6):377–382. doi: 10.1016/j.cplett.2005.11.015. DOI

Lischka H., Dallos M., Szalay P. G., Yarkony D. R., Shepard R.. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. I. Formalism. J. Chem. Phys. 2004;120(16):7322–7329. doi: 10.1063/1.1668615. PubMed DOI

Dallos M., Lischka H., Shepard R., Yarkony D. R., Szalay P. G.. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. II. Minima on the Crossing Seam: Formaldehyde and the Photodimerization of Ethylene. J. Chem. Phys. 2004;120(16):7330–7339. doi: 10.1063/1.1668631. PubMed DOI

Barbatti M., Bondanza M., Crespo-Otero R., Demoulin B., Dral P. O., Granucci G., Kossoski F., Lischka H., Mennucci B., Mukherjee S., Pederzoli M., Persico M., Pinheiro M. Jr, Pittner J., Plasser F., Sangiogo Gil E., Stojanovic L.. Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. J. Chem. Theory Comput. 2022;18(11):6851–6865. doi: 10.1021/acs.jctc.2c00804. PubMed DOI PMC

Pederzoli M., Pittner J.. A New Approach to Molecular Dynamics with Non-Adiabatic and Spin-Orbit Effects with Applications to QM/MM Simulations of Thiophene and Selenophene. J. Chem. Phys. 2017;146(11):114101. doi: 10.1063/1.4978289. PubMed DOI

Wasif Baig M., Pederzoli M., Kývala M., Cwiklik L., Pittner J.. Theoretical Investigation of the Effect of Alkylation and Bromination on Intersystem Crossing in BODIPY-Based Photosensitizers. J. Phys. Chem. B. 2021;125(42):11617–11627. doi: 10.1021/acs.jpcb.1c05236. PubMed DOI

Bhaskaran-Nair K., Demel O., Šmydke J., Pittner J.. Multireference State-Specific Mukherjee’s Coupled Cluster Method with Noniterative Triexcitations Using Uncoupled Approximation. J. Chem. Phys. 2011;134(15):154106. doi: 10.1063/1.3573373. PubMed DOI

Lang J., Brabec J., Saitow M., Pittner J., Neese F., Demel O.. Perturbative Triples Correction to Domain-Based Local Pair Natural Orbital Variants of Mukherjee’s State Specific Coupled Cluster Method. Phys. Chem. Chem. Phys. 2019;21(9):5022–5038. doi: 10.1039/C8CP03577F. PubMed DOI

Neese F.. The ORCA Program System. WIREs Comput. Mol. Sci. 2012;2(1):73–78. doi: 10.1002/wcms.81. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...