Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers

. 2022 Jul 20 ; 144 (28) : 12725-12731. [epub] 20220711

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35817408

The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.

Zobrazit více v PubMed

Kadish K.; Smith K. M.; Guilard R.. The Porphyrin Handbook; Elsevier, 2000; Vol. 10, pp 1–254.

Kadish K. M.; Guilard R.; Smith K. M.. Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine; World Scientific, 2012; Vol. 18, pp 1–472.

Zhang Y.; Lovell J. F. Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics 2012, 2, 905–915. 10.7150/thno.4908. PubMed DOI PMC

Chen Y.; Li A.; Huang Z.-H.; Wang L.-N.; Kang F. Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials 2016, 6, 51.10.3390/nano6030051. PubMed DOI PMC

Senge M. O.; Fazekas M.; Notaras E. G. A.; Blau W. J.; Zawadzka M.; Locos O. B.; Ni Mhuircheartaigh E. M. Nonlinear Optical Properties of Porphyrins. Adv. Mater. 2007, 19, 2737–2774. 10.1002/adma.200601850. DOI

Li L.-L.; Diau E. W.-G. Porphyrin -Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291–304. 10.1039/c2cs35257e. PubMed DOI

Urbani M.; Grätzel M.; Nazeeruddin M. K.; Torres T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chem. Rev. 2014, 114 (24), 12330–12396. 10.1021/cr5001964. PubMed DOI

Lopes D. M.; Araujo-Chaves J. C.; Menezes L. R.; Nantes-Cardoso I. L.. Technological Applications of Porphyrins and Related Compounds: Spintronics and Micro-/Nanomotors; IntechOpen, 2019; pp 1–236.

Huang H.; Song W.; Rieffel J.; Lovell J. F. Emerging Applications of Porphyrins in Photomedicine. Front. Physiol. 2015, 3, 23.10.3389/fphy.2015.00023. PubMed DOI PMC

Bechet D.; Couleaud P.; Frochot C.; Viriot M.-L.; Guillemin F.; Barberi-Heyob M. Nanoparticles as Vehicles for Delivery of Photodynamic Therapy Agents. Trends Biotechnol. 2008, 26, 612–621. 10.1016/j.tibtech.2008.07.007. PubMed DOI

Ding Y.; Zhu W.-H.; Xie Y. Development of Ion Chemosensors Based on Porphyrin Analogues. Chem. Rev. 2017, 117, 2203–2256. 10.1021/acs.chemrev.6b00021. PubMed DOI

Josefsen L. B.; Boyle R. W. Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics. Theranostics 2012, 2, 916–966. 10.7150/thno.4571. PubMed DOI PMC

Hiroto S.; Miyake Y.; Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. 10.1021/acs.chemrev.6b00427. PubMed DOI

Senge M. O. Stirring the Porphyrin Alphabet Soup—Functionalization Reactions for Porphyrins. Chem. Commun. 2011, 47, 1943–1960. 10.1039/c0cc03984e. PubMed DOI

Auwärter W.; Écija D.; Klappenberger F.; Barth J. V. Porphyrins at Interfaces. Nat. Chem. 2015, 7, 105–120. 10.1038/nchem.2159. PubMed DOI

Gottfried J. M. Surface Chemistry of Porphyrins and Phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. 10.1016/j.surfrep.2015.04.001. DOI

Otsuki J. STM Studies on Porphyrins. Coord. Chem. Rev. 2010, 254, 2311–2341. 10.1016/j.ccr.2009.12.038. DOI

Mateo L. M.; Sun Q.; Eimre K.; Pignedoli C. A.; Torres T.; Fasel R.; Bottari G. On-Surface Synthesis of Singly and Doubly Porphyrin-Capped Graphene Nanoribbon Segments. Chem. Sci. 2021, 12, 247–252. 10.1039/d0sc04316h. PubMed DOI PMC

Mallada B.; Błoński P.; Langer R.; Jelínek P.; Otyepka M.; de la Torre B. On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS Appl. Mater. Interfaces 2021, 13, 32393–32401. 10.1021/acsami.1c04693. PubMed DOI

Lafferentz L.; Eberhardt V.; Dri C.; Africh C.; Comelli G.; Esch F.; Hecht S.; Grill L. Controlling On-Surface Polymerization by Hierarchical and Substrate-Directed Growth. Nat. Chem. 2012, 4, 215–220. 10.1038/nchem.1242. PubMed DOI

Wiengarten A.; Seufert K.; Auwärter W.; Ecija D.; Diller K.; Allegretti F.; Bischoff F.; Fischer S.; Duncan D. A.; Papageorgiou A. C.; Klappenberger F.; Acres R. G.; Ngo T. H.; Barth J. V. Surface-Assisted Dehydrogenative Homocoupling of Porphine Molecules. J. Am. Chem. Soc. 2014, 136, 9346–9354. 10.1021/ja501680n. PubMed DOI

He Y.; Garnica M.; Bischoff F.; Ducke J.; Bocquet M.-L.; Batzill M.; Auwärter W.; Barth J. V. Fusing Tetrapyrroles to Graphene Edges by Surface-Assisted Covalent Coupling. Nat. Chem. 2017, 9, 33–38. 10.1038/nchem.2600. PubMed DOI

Krasnikov S. A.; Doyle C. M.; Sergeeva N. N.; Preobrajenski A. B.; Vinogradov N. A.; Sergeeva Y. N.; Zakharov A. A.; Senge M. O.; Cafolla A. A. Formation of Extended Covalently Bonded Ni Porphyrin Networks on the Au(111) Surface. Nano Res. 2011, 4, 376–384. 10.1007/s12274-010-0092-7. DOI

Sun Q.; Mateo L. M.; Robles R.; Lorente N.; Ruffieux P.; Bottari G.; Torres T.; Fasel R. Bottom-up Fabrication and Atomic-Scale Characterization of Triply Linked, Laterally π-Extended Porphyrin Nanotapes. Angew. Chem., Int. Ed. 2021, 60, 16208–16214. 10.1002/anie.202105350. PubMed DOI PMC

Saywell A.; Browning A. S.; Rahe P.; Anderson H. L.; Beton P. H.; Beton H. Organisation and Ordering of 1D Porphyrin Polymers Synthesised by On-Surface Glaser Coupling. Chem. Commun. 2016, 52, 10342–10345. 10.1039/c6cc03758e. PubMed DOI

Tanoue R.; Higuchi R.; Ikebe K.; Uemura S.; Kimizuka N.; Stieg A. Z.; Gimzewski J. K.; Kunitake M. Thermodynamic Self-Assembly of Two-Dimensional π -Conjugated Metal–Porphyrin Covalent Organic Frameworks by “On-Site” Equilibrium Polymerization. J. Nanosci. Nanotechnol. 2014, 14, 2211–2216. 10.1166/jnn.2014.8540. PubMed DOI

Liu X.-H.; Guan C.-Z.; Zheng Q.-N.; Wang D.; Wan L.-J. Molecular Engineering of Schiff-Base Linked Covalent Polymers with Diverse Topologies by Gas-Solid Interface Reaction. J. Chem. Phys. 2015, 142, 101905.10.1063/1.4906271. PubMed DOI

Sahabudeen H.; Qi H.; Ballabio M.; Položij M.; Olthof S.; Shivhare R.; Jing Y.; Park S.; Liu K.; Zhang T.; Ma J.; Rellinghaus B.; Mannsfeld S.; Heine T.; Bonn M.; Cánovas E.; Zheng Z.; Kaiser U.; Dong R.; Feng X. Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. Angew. Chem., Int. Ed. 2020, 132, 6084–6092. 10.1002/ange.201915217. PubMed DOI PMC

Joshi T.; Chen C.; Li H.; Diercks C. S.; Wang G.; Waller P. J.; Li H.; Bredas J. L.; Yaghi O. M.; Crommie M. F. Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework. Adv. Mater. 2019, 31, 1805941.10.1002/adma.201805941. PubMed DOI

Bischoff F.; He Y.; Riss A.; Seufert K.; Auwärter W.; Barth J. V. Exploration of Interfacial Porphine Coupling Schemes and Hybrid Systems by Bond-Resolved Scanning Probe Microscopy. Angew. Chem., Int. Ed. 2018, 130, 16262–16267. 10.1002/ange.201808640. PubMed DOI

Kinikar A.; Di Giovannantonio M.; Urgel J. I.; Eimre K.; Qiu Z.; Gu Y.; Jin E.; Narita A.; Wang X.-Y.; Müllen K.; Ruffieux P.; Pignedoli C. A.; Fasel R. On-Surface Polyarylene Synthesis by Cycloaromatization of Isopropyl Substituents. Nat. Synth. 2022, 1, 289–296. 10.1038/s44160-022-00032-5. DOI

Yazyev O. V. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010, 73, 056501.10.1088/0034-4885/73/5/056501. DOI

Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15, 22–28. 10.1038/s41565-019-0577-9. PubMed DOI

Mishra S.; Catarina G.; Wu F.; Ortiz R.; Jacob D.; Eimre K.; Ma J.; Pignedoli C. A.; Feng X.; Ruffieux P.; Fernández-Rossier J.; Fasel R. Observation of Fractional Edge Excitations in Nanographene Spin Chains. Nature 2021, 598, 287–292. 10.1038/s41586-021-03842-3. PubMed DOI

Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di Giovannantonio M.; Sancho-García J. C.; Fernández-Rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13, 581–586. 10.1038/s41557-021-00678-2. PubMed DOI

Li J.; Sanz S.; Corso M.; Choi D. J.; Peña D.; Frederiksen T.; Pascual J. I. Single Spin Localization and Manipulation in Graphene Open-Shell Nanostructures. Nat. Commun. 2019, 10, 200.10.1038/s41467-018-08060-6. PubMed DOI PMC

Li J.; Sanz S.; Castro-Esteban J.; Vilas-Varela M.; Friedrich N.; Frederiksen T.; Peña D.; Pascual J. I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020, 124, 177201.10.1103/physrevlett.124.177201. PubMed DOI

Sánchez-Grande A.; Urgel J. I.; Cahlík A.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mutombo P.; Nachtigallová D.; Nieman R.; Lischka H.; de la Torre B.; Miranda R.; Gröning O.; Martín N.; Jelínek P.; Écija D. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem. 2020, 59, 17594–17599. 10.1002/anie.202006276. PubMed DOI PMC

Shimizu D.; Osuka A. Porphyrinoids as a Platform of Stable Radicals. Chem. Sci. 2018, 9, 1408–1423. 10.1039/c7sc05210c. PubMed DOI PMC

Littler B. J.; Ciringh Y.; Lindsey J. S. Investigation of Conditions Giving Minimal Scrambling in the Synthesis of Trans-Porphyrins from Dipyrromethanes and Aldehydes. J. Org. Chem. 1999, 64, 2864–2872. 10.1021/jo982452o. PubMed DOI

Lindsey J. S.; Wagner R. W. Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins. J. Org. Chem. 1989, 54, 828–836. 10.1021/jo00265a021. DOI

Lee C.-H.; Lindsey J. S. One-Flask Synthesis of Meso-Substituted Dipyrromethanes and Their Application in the Synthesis of Trans-Substituted Porphyrin Building Blocks. Tetrahedron 1994, 50, 11427–11440. 10.1016/s0040-4020(01)89282-6. DOI

Sobral A. J. F. N.; Rebanda N. G. C. L.; da Silva M.; Lampreia S. H.; Ramos Silva M.; Beja A. M.; Paixão J. A.; Rocha Gonsalves A. M. d. A. One-Step Synthesis of Dipyrromethanes in Water. Tetrahedron Lett. 2003, 44, 3971–3973. 10.1016/s0040-4039(03)00785-8. DOI

Rohand T.; Dolusic E.; Ngo T. H.; Maes W.; Dehaen W. Efficient Synthesis of Aryldipyrromethanes in Water and Their Application in the Synthesis of Corroles and Dipyrromethenes. Arkivoc 2007, 2007, 307–324. 10.3998/ark.5550190.0008.a20. DOI

Zoli L.; Cozzi P. G. Electrophilic Activation of Aldehydes “On Water”: A Facile Route to Dipyrromethanes. ChemSusChem 2009, 2, 218–220. 10.1002/cssc.200900023. PubMed DOI

Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. 10.1126/science.1176210. PubMed DOI

Hapala P.; Kichin G.; Wagner C.; Tautz F. S.; Temirov R.; Jelínek P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 085421.10.1103/physrevb.90.085421. DOI

Lohr T. G.; Urgel J. I.; Eimre K.; Liu J.; Di Giovannantonio M.; Mishra S.; Berger R.; Ruffieux P.; Pignedoli C. A.; Fasel R.; Feng X. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572. 10.1021/jacs.0c05668. PubMed DOI

Sun Q.; Mateo L. M.; Robles R.; Ruffieux P.; Lorente N.; Bottari G.; Torres T.; Fasel R. Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. J. Am. Chem. Soc. 2020, 142, 18109–18117. 10.1021/jacs.0c07781. PubMed DOI

Di Giovannantonio M.; Eimre K.; Yakutovich A. V.; Chen Q.; Mishra S.; Urgel J. I.; Pignedoli C. A.; Ruffieux P.; Müllen K.; Narita A.; Fasel R. On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1-b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354. 10.1021/jacs.9b05335. PubMed DOI

Di Giovannantonio M.; Chen Q.; Urgel J. I.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Narita A.; Fasel R. On-Surface Synthesis of Oligo(Indenoindene). J. Am. Chem. Soc. 2020, 142, 12925–12929. 10.1021/jacs.0c05701. PubMed DOI

Sánchez-Grande A.; Urgel J. I.; Veis L.; Edalatmanesh S.; Santos J.; Lauwaet K.; Mutombo P.; Gallego J. M.; Brabec J.; Beran P.; Nachtigallová D.; Miranda R.; Martín N.; Jelínek P.; Écija D. Unravelling the Open-Shell Character of Peripentacene on Au(111). J. Phys. Chem. Lett. 2021, 12, 330–336. 10.1021/acs.jpclett.0c02518. PubMed DOI

Zhao Y.; Jiang K.; Li C.; Liu Y.; Xu C.; Zheng W.; Guan D.; Li Y.; Zheng H.; Liu C.; Luo W.; Jia J.; Zhuang X.; Wang S. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020, 142, 18532–18540. 10.1021/jacs.0c07791. PubMed DOI

Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. 10.1016/j.cpc.2009.06.022. DOI

Krejčí O.; Hapala P.; Ondráček M.; Jelínek P. Principles and Simulations of High-Resolution STM Imaging with a Flexible Tip Apex. Phys. Rev. B 2017, 95, 045407.10.1103/physrevb.95.045407. DOI

Madhavan V.; Chen W.; Jamneala T.; Crommie M. F.; Wingreen N. S. Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 1998, 280, 567–569. 10.1126/science.280.5363.567. PubMed DOI

Sasaki S.; De Franceschi S.; Elzerman J. M.; van der Wiel W. G.; Eto M.; Tarucha S.; Kouwenhoven L. P. Kondo Effect in an Integer-Spin Quantum Dot. Nature 2000, 405, 764–767. 10.1038/35015509. PubMed DOI

Roch N.; Florens S.; Costi T. A.; Wernsdorfer W.; Balestro F. Observation of the Underscreened Kondo Effect in a Molecular Transistor. Phys. Rev. Lett. 2009, 103, 197202.10.1103/physrevlett.103.197202. PubMed DOI

Parks J. J.; Champagne A. R.; Costi T. A.; Shum W. W.; Pasupathy A. N.; Neuscamman E.; Flores-Torres S.; Cornaglia P. S.; Aligia A. A.; Balseiro C. A.; Chan G. K.-L.; Abruña H. D.; Ralph D. C. Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect. Science 2010, 328, 1370–1373. 10.1126/science.1186874. PubMed DOI

Schleyer P. v. R.; Maerker C.; Dransfeld A.; Jiao H.; van Eikema Hommes N. J. R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. 10.1021/ja960582d. PubMed DOI

Geuenich D.; Hess K.; Köhler F.; Herges R. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. 10.1021/cr0300901. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...