Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35817408
PubMed Central
PMC9305978
DOI
10.1021/jacs.2c02700
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.
Departamento de Física de La Materia Condensada Universidad Autónoma de Madrid Madrid 28049 Spain
IMDEA Nanoscience C Faraday 9 Campus de Cantoblanco Madrid 28049 Spain
Institute of Physics Lodz University of Technology Lodz 90 924 Poland
Institute of Physics of the Czech Academy of Science Praha 162 00 Czech Republic
Instituto de Ciencia de Materiales de Madrid CSIC Cantoblanco Madrid 28049 Spain
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague 182 00 Czech Republic
Zobrazit více v PubMed
Kadish K.; Smith K. M.; Guilard R.. The Porphyrin Handbook; Elsevier, 2000; Vol. 10, pp 1–254.
Kadish K. M.; Guilard R.; Smith K. M.. Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine; World Scientific, 2012; Vol. 18, pp 1–472.
Zhang Y.; Lovell J. F. Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics 2012, 2, 905–915. 10.7150/thno.4908. PubMed DOI PMC
Chen Y.; Li A.; Huang Z.-H.; Wang L.-N.; Kang F. Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials 2016, 6, 51.10.3390/nano6030051. PubMed DOI PMC
Senge M. O.; Fazekas M.; Notaras E. G. A.; Blau W. J.; Zawadzka M.; Locos O. B.; Ni Mhuircheartaigh E. M. Nonlinear Optical Properties of Porphyrins. Adv. Mater. 2007, 19, 2737–2774. 10.1002/adma.200601850. DOI
Li L.-L.; Diau E. W.-G. Porphyrin -Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291–304. 10.1039/c2cs35257e. PubMed DOI
Urbani M.; Grätzel M.; Nazeeruddin M. K.; Torres T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chem. Rev. 2014, 114 (24), 12330–12396. 10.1021/cr5001964. PubMed DOI
Lopes D. M.; Araujo-Chaves J. C.; Menezes L. R.; Nantes-Cardoso I. L.. Technological Applications of Porphyrins and Related Compounds: Spintronics and Micro-/Nanomotors; IntechOpen, 2019; pp 1–236.
Huang H.; Song W.; Rieffel J.; Lovell J. F. Emerging Applications of Porphyrins in Photomedicine. Front. Physiol. 2015, 3, 23.10.3389/fphy.2015.00023. PubMed DOI PMC
Bechet D.; Couleaud P.; Frochot C.; Viriot M.-L.; Guillemin F.; Barberi-Heyob M. Nanoparticles as Vehicles for Delivery of Photodynamic Therapy Agents. Trends Biotechnol. 2008, 26, 612–621. 10.1016/j.tibtech.2008.07.007. PubMed DOI
Ding Y.; Zhu W.-H.; Xie Y. Development of Ion Chemosensors Based on Porphyrin Analogues. Chem. Rev. 2017, 117, 2203–2256. 10.1021/acs.chemrev.6b00021. PubMed DOI
Josefsen L. B.; Boyle R. W. Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics. Theranostics 2012, 2, 916–966. 10.7150/thno.4571. PubMed DOI PMC
Hiroto S.; Miyake Y.; Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. 10.1021/acs.chemrev.6b00427. PubMed DOI
Senge M. O. Stirring the Porphyrin Alphabet Soup—Functionalization Reactions for Porphyrins. Chem. Commun. 2011, 47, 1943–1960. 10.1039/c0cc03984e. PubMed DOI
Auwärter W.; Écija D.; Klappenberger F.; Barth J. V. Porphyrins at Interfaces. Nat. Chem. 2015, 7, 105–120. 10.1038/nchem.2159. PubMed DOI
Gottfried J. M. Surface Chemistry of Porphyrins and Phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. 10.1016/j.surfrep.2015.04.001. DOI
Otsuki J. STM Studies on Porphyrins. Coord. Chem. Rev. 2010, 254, 2311–2341. 10.1016/j.ccr.2009.12.038. DOI
Mateo L. M.; Sun Q.; Eimre K.; Pignedoli C. A.; Torres T.; Fasel R.; Bottari G. On-Surface Synthesis of Singly and Doubly Porphyrin-Capped Graphene Nanoribbon Segments. Chem. Sci. 2021, 12, 247–252. 10.1039/d0sc04316h. PubMed DOI PMC
Mallada B.; Błoński P.; Langer R.; Jelínek P.; Otyepka M.; de la Torre B. On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS Appl. Mater. Interfaces 2021, 13, 32393–32401. 10.1021/acsami.1c04693. PubMed DOI
Lafferentz L.; Eberhardt V.; Dri C.; Africh C.; Comelli G.; Esch F.; Hecht S.; Grill L. Controlling On-Surface Polymerization by Hierarchical and Substrate-Directed Growth. Nat. Chem. 2012, 4, 215–220. 10.1038/nchem.1242. PubMed DOI
Wiengarten A.; Seufert K.; Auwärter W.; Ecija D.; Diller K.; Allegretti F.; Bischoff F.; Fischer S.; Duncan D. A.; Papageorgiou A. C.; Klappenberger F.; Acres R. G.; Ngo T. H.; Barth J. V. Surface-Assisted Dehydrogenative Homocoupling of Porphine Molecules. J. Am. Chem. Soc. 2014, 136, 9346–9354. 10.1021/ja501680n. PubMed DOI
He Y.; Garnica M.; Bischoff F.; Ducke J.; Bocquet M.-L.; Batzill M.; Auwärter W.; Barth J. V. Fusing Tetrapyrroles to Graphene Edges by Surface-Assisted Covalent Coupling. Nat. Chem. 2017, 9, 33–38. 10.1038/nchem.2600. PubMed DOI
Krasnikov S. A.; Doyle C. M.; Sergeeva N. N.; Preobrajenski A. B.; Vinogradov N. A.; Sergeeva Y. N.; Zakharov A. A.; Senge M. O.; Cafolla A. A. Formation of Extended Covalently Bonded Ni Porphyrin Networks on the Au(111) Surface. Nano Res. 2011, 4, 376–384. 10.1007/s12274-010-0092-7. DOI
Sun Q.; Mateo L. M.; Robles R.; Lorente N.; Ruffieux P.; Bottari G.; Torres T.; Fasel R. Bottom-up Fabrication and Atomic-Scale Characterization of Triply Linked, Laterally π-Extended Porphyrin Nanotapes. Angew. Chem., Int. Ed. 2021, 60, 16208–16214. 10.1002/anie.202105350. PubMed DOI PMC
Saywell A.; Browning A. S.; Rahe P.; Anderson H. L.; Beton P. H.; Beton H. Organisation and Ordering of 1D Porphyrin Polymers Synthesised by On-Surface Glaser Coupling. Chem. Commun. 2016, 52, 10342–10345. 10.1039/c6cc03758e. PubMed DOI
Tanoue R.; Higuchi R.; Ikebe K.; Uemura S.; Kimizuka N.; Stieg A. Z.; Gimzewski J. K.; Kunitake M. Thermodynamic Self-Assembly of Two-Dimensional π -Conjugated Metal–Porphyrin Covalent Organic Frameworks by “On-Site” Equilibrium Polymerization. J. Nanosci. Nanotechnol. 2014, 14, 2211–2216. 10.1166/jnn.2014.8540. PubMed DOI
Liu X.-H.; Guan C.-Z.; Zheng Q.-N.; Wang D.; Wan L.-J. Molecular Engineering of Schiff-Base Linked Covalent Polymers with Diverse Topologies by Gas-Solid Interface Reaction. J. Chem. Phys. 2015, 142, 101905.10.1063/1.4906271. PubMed DOI
Sahabudeen H.; Qi H.; Ballabio M.; Položij M.; Olthof S.; Shivhare R.; Jing Y.; Park S.; Liu K.; Zhang T.; Ma J.; Rellinghaus B.; Mannsfeld S.; Heine T.; Bonn M.; Cánovas E.; Zheng Z.; Kaiser U.; Dong R.; Feng X. Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. Angew. Chem., Int. Ed. 2020, 132, 6084–6092. 10.1002/ange.201915217. PubMed DOI PMC
Joshi T.; Chen C.; Li H.; Diercks C. S.; Wang G.; Waller P. J.; Li H.; Bredas J. L.; Yaghi O. M.; Crommie M. F. Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework. Adv. Mater. 2019, 31, 1805941.10.1002/adma.201805941. PubMed DOI
Bischoff F.; He Y.; Riss A.; Seufert K.; Auwärter W.; Barth J. V. Exploration of Interfacial Porphine Coupling Schemes and Hybrid Systems by Bond-Resolved Scanning Probe Microscopy. Angew. Chem., Int. Ed. 2018, 130, 16262–16267. 10.1002/ange.201808640. PubMed DOI
Kinikar A.; Di Giovannantonio M.; Urgel J. I.; Eimre K.; Qiu Z.; Gu Y.; Jin E.; Narita A.; Wang X.-Y.; Müllen K.; Ruffieux P.; Pignedoli C. A.; Fasel R. On-Surface Polyarylene Synthesis by Cycloaromatization of Isopropyl Substituents. Nat. Synth. 2022, 1, 289–296. 10.1038/s44160-022-00032-5. DOI
Yazyev O. V. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010, 73, 056501.10.1088/0034-4885/73/5/056501. DOI
Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15, 22–28. 10.1038/s41565-019-0577-9. PubMed DOI
Mishra S.; Catarina G.; Wu F.; Ortiz R.; Jacob D.; Eimre K.; Ma J.; Pignedoli C. A.; Feng X.; Ruffieux P.; Fernández-Rossier J.; Fasel R. Observation of Fractional Edge Excitations in Nanographene Spin Chains. Nature 2021, 598, 287–292. 10.1038/s41586-021-03842-3. PubMed DOI
Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di Giovannantonio M.; Sancho-García J. C.; Fernández-Rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13, 581–586. 10.1038/s41557-021-00678-2. PubMed DOI
Li J.; Sanz S.; Corso M.; Choi D. J.; Peña D.; Frederiksen T.; Pascual J. I. Single Spin Localization and Manipulation in Graphene Open-Shell Nanostructures. Nat. Commun. 2019, 10, 200.10.1038/s41467-018-08060-6. PubMed DOI PMC
Li J.; Sanz S.; Castro-Esteban J.; Vilas-Varela M.; Friedrich N.; Frederiksen T.; Peña D.; Pascual J. I. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020, 124, 177201.10.1103/physrevlett.124.177201. PubMed DOI
Sánchez-Grande A.; Urgel J. I.; Cahlík A.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mutombo P.; Nachtigallová D.; Nieman R.; Lischka H.; de la Torre B.; Miranda R.; Gröning O.; Martín N.; Jelínek P.; Écija D. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem. 2020, 59, 17594–17599. 10.1002/anie.202006276. PubMed DOI PMC
Shimizu D.; Osuka A. Porphyrinoids as a Platform of Stable Radicals. Chem. Sci. 2018, 9, 1408–1423. 10.1039/c7sc05210c. PubMed DOI PMC
Littler B. J.; Ciringh Y.; Lindsey J. S. Investigation of Conditions Giving Minimal Scrambling in the Synthesis of Trans-Porphyrins from Dipyrromethanes and Aldehydes. J. Org. Chem. 1999, 64, 2864–2872. 10.1021/jo982452o. PubMed DOI
Lindsey J. S.; Wagner R. W. Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins. J. Org. Chem. 1989, 54, 828–836. 10.1021/jo00265a021. DOI
Lee C.-H.; Lindsey J. S. One-Flask Synthesis of Meso-Substituted Dipyrromethanes and Their Application in the Synthesis of Trans-Substituted Porphyrin Building Blocks. Tetrahedron 1994, 50, 11427–11440. 10.1016/s0040-4020(01)89282-6. DOI
Sobral A. J. F. N.; Rebanda N. G. C. L.; da Silva M.; Lampreia S. H.; Ramos Silva M.; Beja A. M.; Paixão J. A.; Rocha Gonsalves A. M. d. A. One-Step Synthesis of Dipyrromethanes in Water. Tetrahedron Lett. 2003, 44, 3971–3973. 10.1016/s0040-4039(03)00785-8. DOI
Rohand T.; Dolusic E.; Ngo T. H.; Maes W.; Dehaen W. Efficient Synthesis of Aryldipyrromethanes in Water and Their Application in the Synthesis of Corroles and Dipyrromethenes. Arkivoc 2007, 2007, 307–324. 10.3998/ark.5550190.0008.a20. DOI
Zoli L.; Cozzi P. G. Electrophilic Activation of Aldehydes “On Water”: A Facile Route to Dipyrromethanes. ChemSusChem 2009, 2, 218–220. 10.1002/cssc.200900023. PubMed DOI
Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. 10.1126/science.1176210. PubMed DOI
Hapala P.; Kichin G.; Wagner C.; Tautz F. S.; Temirov R.; Jelínek P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 085421.10.1103/physrevb.90.085421. DOI
Lohr T. G.; Urgel J. I.; Eimre K.; Liu J.; Di Giovannantonio M.; Mishra S.; Berger R.; Ruffieux P.; Pignedoli C. A.; Fasel R.; Feng X. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J. Am. Chem. Soc. 2020, 142, 13565–13572. 10.1021/jacs.0c05668. PubMed DOI
Sun Q.; Mateo L. M.; Robles R.; Ruffieux P.; Lorente N.; Bottari G.; Torres T.; Fasel R. Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. J. Am. Chem. Soc. 2020, 142, 18109–18117. 10.1021/jacs.0c07781. PubMed DOI
Di Giovannantonio M.; Eimre K.; Yakutovich A. V.; Chen Q.; Mishra S.; Urgel J. I.; Pignedoli C. A.; Ruffieux P.; Müllen K.; Narita A.; Fasel R. On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1-b]Fluorene Polymers and Their Lateral Fusion into Porous Ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354. 10.1021/jacs.9b05335. PubMed DOI
Di Giovannantonio M.; Chen Q.; Urgel J. I.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Narita A.; Fasel R. On-Surface Synthesis of Oligo(Indenoindene). J. Am. Chem. Soc. 2020, 142, 12925–12929. 10.1021/jacs.0c05701. PubMed DOI
Sánchez-Grande A.; Urgel J. I.; Veis L.; Edalatmanesh S.; Santos J.; Lauwaet K.; Mutombo P.; Gallego J. M.; Brabec J.; Beran P.; Nachtigallová D.; Miranda R.; Martín N.; Jelínek P.; Écija D. Unravelling the Open-Shell Character of Peripentacene on Au(111). J. Phys. Chem. Lett. 2021, 12, 330–336. 10.1021/acs.jpclett.0c02518. PubMed DOI
Zhao Y.; Jiang K.; Li C.; Liu Y.; Xu C.; Zheng W.; Guan D.; Li Y.; Zheng H.; Liu C.; Luo W.; Jia J.; Zhuang X.; Wang S. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J. Am. Chem. Soc. 2020, 142, 18532–18540. 10.1021/jacs.0c07791. PubMed DOI
Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. 10.1016/j.cpc.2009.06.022. DOI
Krejčí O.; Hapala P.; Ondráček M.; Jelínek P. Principles and Simulations of High-Resolution STM Imaging with a Flexible Tip Apex. Phys. Rev. B 2017, 95, 045407.10.1103/physrevb.95.045407. DOI
Madhavan V.; Chen W.; Jamneala T.; Crommie M. F.; Wingreen N. S. Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 1998, 280, 567–569. 10.1126/science.280.5363.567. PubMed DOI
Sasaki S.; De Franceschi S.; Elzerman J. M.; van der Wiel W. G.; Eto M.; Tarucha S.; Kouwenhoven L. P. Kondo Effect in an Integer-Spin Quantum Dot. Nature 2000, 405, 764–767. 10.1038/35015509. PubMed DOI
Roch N.; Florens S.; Costi T. A.; Wernsdorfer W.; Balestro F. Observation of the Underscreened Kondo Effect in a Molecular Transistor. Phys. Rev. Lett. 2009, 103, 197202.10.1103/physrevlett.103.197202. PubMed DOI
Parks J. J.; Champagne A. R.; Costi T. A.; Shum W. W.; Pasupathy A. N.; Neuscamman E.; Flores-Torres S.; Cornaglia P. S.; Aligia A. A.; Balseiro C. A.; Chan G. K.-L.; Abruña H. D.; Ralph D. C. Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect. Science 2010, 328, 1370–1373. 10.1126/science.1186874. PubMed DOI
Schleyer P. v. R.; Maerker C.; Dransfeld A.; Jiao H.; van Eikema Hommes N. J. R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. 10.1021/ja960582d. PubMed DOI
Geuenich D.; Hess K.; Köhler F.; Herges R. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. 10.1021/cr0300901. PubMed DOI