Atomically Precise Control of Topological State Hybridization in Conjugated Polymers

. 2024 Oct 29 ; 18 (43) : 29902-29912. [epub] 20241015

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39404161

Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.

Zobrazit více v PubMed

Celis A.; Nair M. N.; Taleb-Ibrahimi A.; Conrad E. H.; Berger C.; Heer W. A.; Tejeda A. Graphene Nanoribbons: Fabrication, Properties and Devices. J. Phys. D: Appl. Phys. 2016, 49 (14), 14300110.1088/0022-3727/49/14/143001. DOI

Gröning O.; Wang S.; Yao X.; Pignedoli C. A.; Borin Barin G.; Daniels C.; Cupo A.; Meunier V.; Feng X.; Narita A.; Müllen K.; Ruffieux P.; Fasel R. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature 2018, 560 (7717), 209–213. 10.1038/s41586-018-0375-9. PubMed DOI

Marmolejo-Tejada J. M.; Velasco-Medina J. Review on Graphene Nanoribbon Devices for Logic Applications. Microelectronics Journal 2016, 48, 18–38. 10.1016/j.mejo.2015.11.006. DOI

Geng Z.; Hähnlein B.; Granzner R.; Auge M.; Lebedev A. A.; Davydov V. Y.; Kittler M.; Pezoldt J.; Schwierz F. Graphene Nanoribbons for Electronic Devices. Annal. Phys. 2017, 529 (11), 170003310.1002/andp.201700033. DOI

Wang H.; Wang H. S.; Ma C.; Chen L.; Jiang C.; Chen C.; Xie X.; Li A.-P.; Wang X. Graphene Nanoribbons for Quantum Electronics. Nat. Rev. Phys. 2021, 3 (12), 791–802. 10.1038/s42254-021-00370-x. DOI

Han M. Y.; Özyilmaz B.; Zhang Y.; Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 2007, 98 (20), 20680510.1103/PhysRevLett.98.206805. PubMed DOI

Chen Z.; Lin Y.-M.; Rooks M. J.; Avouris P. Graphene Nano-Ribbon Electronics. Physica E: Low-dimensional Systems and Nanostructures 2007, 40 (2), 228–232. 10.1016/j.physe.2007.06.020. DOI

Shende P.; Augustine S.; Prabhakar B. A Review on Graphene Nanoribbons for Advanced Biomedical Applications. Carbon Lett. 2020, 30 (5), 465–475. 10.1007/s42823-020-00125-1. DOI

Dong L.; Liu P. N.; Lin N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48 (10), 2765–2774. 10.1021/acs.accounts.5b00160. PubMed DOI

Held P. A.; Fuchs H.; Studer A. Covalent-Bond Formation via On-Surface Chemistry. Chemistry–A. European Journal 2017, 23 (25), 5874–5892. 10.1002/chem.201604047. PubMed DOI

Wang T.; Zhu J. Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74 (2), 97–140. 10.1016/j.surfrep.2019.05.001. DOI

Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119 (7), 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Rizzo D. J.; Veber G.; Cao T.; Bronner C.; Chen T.; Zhao F.; Rodriguez H.; Louie S. G.; Crommie M. F.; Fischer F. R. Topological Band Engineering of Graphene Nanoribbons. Nature 2018, 560 (7717), 204–208. 10.1038/s41586-018-0376-8. PubMed DOI

Cao T.; Zhao F.; Louie S. G. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Phys. Rev. Lett. 2017, 119 (7), 07640110.1103/PhysRevLett.119.076401. PubMed DOI

Li J.; Sanz S.; Merino-Díez N.; Vilas-Varela M.; Garcia-Lekue A.; Corso M.; de Oteyza D. G.; Frederiksen T.; Peña D.; Pascual J. I. Topological Phase Transition in Chiral Graphene Nanoribbons: From Edge Bands to End States. Nat. Commun. 2021, 12 (1), 5538.10.1038/s41467-021-25688-z. PubMed DOI PMC

Rizzo D. J.; Veber G.; Jiang J.; McCurdy R.; Cao T.; Bronner C.; Chen T.; Louie S. G.; Fischer F. R.; Crommie M. F. Inducing Metallicity in Graphene Nanoribbons via Zero-Mode Superlattices. Science 2020, 369 (6511), 1597–1603. 10.1126/science.aay3588. PubMed DOI

Sun Q.; Yao X.; Gröning O.; Eimre K.; Pignedoli C. A.; Müllen K.; Narita A.; Fasel R.; Ruffieux P. Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Lett. 2020, 20 (9), 6429–6436. 10.1021/acs.nanolett.0c02077. PubMed DOI

Sun Q.; Gröning O.; Overbeck J.; Braun O.; Perrin M. L.; Borin Barin G.; El Abbassi M.; Eimre K.; Ditler E.; Daniels C.; Meunier V.; Pignedoli C. A.; Calame M.; Fasel R.; Ruffieux P. Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Adv. Mater. 2020, 32 (12), 190605410.1002/adma.201906054. PubMed DOI

Jacobse P. H.; Sarker M.; Saxena A.; Zahl P.; Wang Z.; Berger E.; Aluru N. R.; Sinitskii A.; Crommie M. F. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. Small 2024, 20, 240047310.1002/smll.202400473. PubMed DOI

Luu T.; Meißner U.-G.; Razmadze L. Localization of Electronic States in Hybrid Nanoribbons in the Nonperturbative Regime. Phys. Rev. B 2022, 106 (19), 19542210.1103/PhysRevB.106.195422. DOI

Jacobse P. H.; Daugherty M. C.; Čerṇevičs K.; Wang Z.; McCurdy R. D.; Yazyev O. V.; Fischer F. R.; Crommie M. F. Five-Membered Rings Create Off-Zero Modes in Nanographene. ACS Nano 2023, 17 (24), 24901–24909. 10.1021/acsnano.3c06006. PubMed DOI PMC

Rizzo D. J.; Jiang J.; Joshi D.; Veber G.; Bronner C.; Durr R. A.; Jacobse P. H.; Cao T.; Kalayjian A.; Rodriguez H.; Butler P.; Chen T.; Louie S. G.; Fischer F. R.; Crommie M. F. Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons. ACS Nano 2021, 15 (12), 20633–20642. 10.1021/acsnano.1c09503. PubMed DOI PMC

Wang S.; Kharche N.; Costa Girão E.; Feng X.; Müllen K.; Meunier V.; Fasel R.; Ruffieux P. Quantum Dots in Graphene Nanoribbons. Nano Lett. 2017, 17 (7), 4277–4283. 10.1021/acs.nanolett.7b01244. PubMed DOI

Chen Y.-C.; Cao T.; Chen C.; Pedramrazi Z.; Haberer D.; de Oteyza D. G.; Fischer F. R.; Louie S. G.; Crommie M. F. Molecular Bandgap Engineering of Bottom-up Synthesized Graphene Nanoribbon Heterojunctions. Nat. Nanotechnol. 2015, 10 (2), 156–160. 10.1038/nnano.2014.307. PubMed DOI

Ruffieux P.; Cai J.; Plumb N. C.; Patthey L.; Prezzi D.; Ferretti A.; Molinari E.; Feng X.; Müllen K.; Pignedoli C. A.; Fasel R. Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano 2012, 6 (8), 6930–6935. 10.1021/nn3021376. PubMed DOI

Carbonell-Sanromà E.; Brandimarte P.; Balog R.; Corso M.; Kawai S.; Garcia-Lekue A.; Saito S.; Yamaguchi S.; Meyer E.; Sánchez-Portal D.; Pascual J. I. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution. Nano Lett. 2017, 17 (1), 50–56. 10.1021/acs.nanolett.6b03148. PubMed DOI

Hla S.-W.; Bartels L.; Meyer G.; Rieder K.-H. Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Phys. Rev. Lett. 2000, 85 (13), 2777–2780. 10.1103/PhysRevLett.85.2777. PubMed DOI

Ho W. Single-Molecule Chemistry. J. Chem. Phys. 2002, 117 (24), 11033–11061. 10.1063/1.1521153. DOI

Zhao A.; Tan S.; Li B.; Wang B.; Yang J.; Hou J. G. STM Tip-Assisted Single Molecule Chemistry. Phys. Chem. Chem. Phys. 2013, 15 (30), 12428–12441. 10.1039/c3cp51446c. PubMed DOI

Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325 (5944), 1110–1114. 10.1126/science.1176210. PubMed DOI

Jelínek P. High Resolution SPM Imaging of Organic Molecules with Functionalized Tips. J. Phys.: Condens. Matter 2017, 29 (34), 343002.10.1088/1361-648X/aa76c7. PubMed DOI

Biswas K.; Soler D.; Mishra S.; Chen Q.; Yao X.; Sánchez-Grande A.; Eimre K.; Mutombo P.; Martín-Fuentes C.; Lauwaet K.; Gallego J. M.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Miranda R.; Urgel J. I.; Narita A.; Fasel R.; Jelínek P.; Écija D. Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J. Am. Chem. Soc. 2023, 145 (5), 2968–2974. 10.1021/jacs.2c11431. PubMed DOI

Cirera B.; Sánchez-Grande A.; de la Torre B.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mallada B.; Zbořil R.; Miranda R.; Gröning O.; Jelínek P.; Martín N.; Ecija D. Tailoring Topological Order and π-Conjugation to Engineer Quasi-Metallic Polymers. Nat. Nanotechnol. 2020, 15 (6), 437–443. 10.1038/s41565-020-0668-7. PubMed DOI

González-Herrero H.; Mendieta-Moreno J. I.; Edalatmanesh S.; Santos J.; Martín N.; Écija D.; de la Torre B.; Jelinek P. Atomic Scale Control and Visualization of Topological Quantum Phase Transition in π-Conjugated Polymers Driven by Their Length. Adv. Mater. 2021, 33 (44), 210449510.1002/adma.202104495. PubMed DOI

Zuzak R.; Dorel R.; Krawiec M.; Such B.; Kolmer M.; Szymonski M.; Echavarren A. M.; Godlewski S. Nonacene Generated by On-Surface Dehydrogenation. ACS Nano 2017, 11 (9), 9321–9329. 10.1021/acsnano.7b04728. PubMed DOI

Zhao C.; Huang Q.; Valenta L.; Eimre K.; Yang L.; Yakutovich A. V.; Xu W.; Ma J.; Feng X.; Juríček M.; Fasel R.; Ruffieux P.; Pignedoli C. A. Tailoring Magnetism of Graphene Nanoflakes via Tip-Controlled Dehydrogenation. Phys. Rev. Lett. 2024, 132 (4), 04620110.1103/PhysRevLett.132.046201. PubMed DOI

Kondo J. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964, 32 (1), 37–49. 10.1143/PTP.32.37. DOI

Ternes M.; Heinrich A. J.; Schneider W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys.: Condens. Matter 2009, 21 (5), 05300110.1088/0953-8984/21/5/053001. PubMed DOI

Anderson P. W. Localized Magnetic States in Metals. Phys. Rev. 1961, 124 (1), 41–53. 10.1103/PhysRev.124.41. DOI

Li J.; Sanz S.; Corso M.; Choi D. J.; Peña D.; Frederiksen T.; Pascual J. I. Single Spin Localization and Manipulation in Graphene Open-Shell Nanostructures. Nat. Commun. 2019, 10 (1), 200.10.1038/s41467-018-08060-6. PubMed DOI PMC

Bhattacharjee R.; Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. Chem. Mater. 2024, 36 (3), 1395–1404. 10.1021/acs.chemmater.3c02547. PubMed DOI PMC

Wang T.; Sanz S.; Castro-Esteban J.; Lawrence J.; Berdonces-Layunta A.; Mohammed M. S. G.; Vilas-Varela M.; Corso M.; Peña D.; Frederiksen T.; de Oteyza D. G. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. Nano Lett. 2022, 22 (1), 164–171. 10.1021/acs.nanolett.1c03578. PubMed DOI

Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15 (1), 22–28. 10.1038/s41565-019-0577-9. PubMed DOI

Zheng Y.; Li C.; Zhao Y.; Beyer D.; Wang G.; Xu C.; Yue X.; Chen Y.; Guan D.-D.; Li Y.-Y.; Zheng H.; Liu C.; Luo W.; Feng X.; Wang S.; Jia J. Engineering of Magnetic Coupling in Nanographene. Phys. Rev. Lett. 2020, 124 (14), 14720610.1103/PhysRevLett.124.147206. PubMed DOI

Zheng Y.; Li C.; Xu C.; Beyer D.; Yue X.; Zhao Y.; Wang G.; Guan D.; Li Y.; Zheng H.; Liu C.; Liu J.; Wang X.; Luo W.; Feng X.; Wang S.; Jia J. Designer Spin Order in Diradical Nanographenes. Nat. Commun. 2020, 11 (1), 6076.10.1038/s41467-020-19834-2. PubMed DOI PMC

Ternes M. Spin Excitations and Correlations in Scanning Tunneling Spectroscopy. New J. Phys. 2015, 17 (6), 06301610.1088/1367-2630/17/6/063016. DOI

Abe M. Diradicals. Chem. Rev. 2013, 113 (9), 7011–7088. 10.1021/cr400056a. PubMed DOI

Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di Giovannantonio M.; Sancho-García J. C.; Fernández-Rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13 (6), 581–586. 10.1038/s41557-021-00678-2. PubMed DOI

Li L.; Nuckolls C.; Venkataraman L. Designing Long and Highly Conducting Molecular Wires with Multiple Nontrivial Topological States. J. Phys. Chem. Lett. 2023, 14 (22), 5141–5147. 10.1021/acs.jpclett.3c01081. PubMed DOI

Li L.; Louie S.; Evans A. M.; Meirzadeh E.; Nuckolls C.; Venkataraman L. Topological Radical Pairs Produce Ultrahigh Conductance in Long Molecular Wires. J. Am. Chem. Soc. 2023, 145 (4), 2492–2498. 10.1021/jacs.2c12059. PubMed DOI

Li L.; Gunasekaran S.; Wei Y.; Nuckolls C.; Venkataraman L. Reversed Conductance Decay of 1D Topological Insulators by Tight-Binding Analysis. J. Phys. Chem. Lett. 2022, 13 (41), 9703–9710. 10.1021/acs.jpclett.2c02812. PubMed DOI

Sánchez-Grande A.; Urgel J. I.; Cahlík A.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mutombo P.; Nachtigallová D.; Nieman R.; Lischka H.; de la Torre B.; Miranda R.; Gröning O.; Martín N.; Jelínek P.; Écija D. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem., Int. Ed. 2020, 59 (40), 17594–17599. 10.1002/anie.202006276. PubMed DOI PMC

de la Torre B.; Švec M.; Foti G.; Krejčí O.; Hapala P.; Garcia-Lekue A.; Frederiksen T.; Zbořil R.; Arnau A.; Vázquez H.; Jelínek P. Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and Its Relation to the AFM/STM Signal. Phys. Rev. Lett. 2017, 119 (16), 16600110.1103/PhysRevLett.119.166001. PubMed DOI

González-Herrero H.; Gómez-Rodríguez J. M.; Mallet P.; Moaied M.; Palacios J. J.; Salgado C.; Ugeda M. M.; Veuillen J.-Y.; Yndurain F.; Brihuega I. Atomic-Scale Control of Graphene Magnetism by Using Hydrogen Atoms. Science 2016, 352, 437.10.1126/science.aad803. PubMed DOI

Su J.; Fan W.; Mutombo P.; Peng X.; Song S.; Ondráček M.; Golub P.; Brabec J.; Veis L.; Telychko M.; Jelínek P.; Wu J.; Lu J. On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Lett. 2021, 21 (1), 861–867. 10.1021/acs.nanolett.0c04627. PubMed DOI

Du Q.; Su X.; Liu Y.; Jiang Y.; Li C.; Yan K.; Ortiz R.; Frederiksen T.; Wang S.; Yu P. Orbital-Symmetry Effects on Magnetic Exchange in Open-Shell Nanographenes. Nat. Commun. 2023, 14 (1), 4802.10.1038/s41467-023-40542-0. PubMed DOI PMC

Frota H. O. Shape of the Kondo Resonance. Phys. Rev. B 1992, 45 (3), 1096–1099. 10.1103/PhysRevB.45.1096. PubMed DOI

Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78 (1), 01370510.1063/1.2432410. PubMed DOI

Schüler M.; Rösner M.; Wehling T. O.; Lichtenstein A. I.; Katsnelson M. I. Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions: Graphene, Silicene, and Benzene. Phys. Rev. Lett. 2013, 111 (3), 03660110.1103/PhysRevLett.111.036601. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...