Atomically Precise Control of Topological State Hybridization in Conjugated Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39404161
PubMed Central
PMC11526428
DOI
10.1021/acsnano.4c10357
Knihovny.cz E-zdroje
- Klíčová slova
- atomic manipulation, noncontact atomic force microscopy, scanning tunneling microscopy, topological quantum phase transition, π-conjugated polymers,
- Publikační typ
- časopisecké články MeSH
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
Condensed Matter Physics Center Universidad Autónoma E 28049 Madrid Spain
Departamento de Física de la Materia Condensada Universidad Autónoma E 28049 Madrid Spain
IMDEA Nanoscience Campus Universitario de Cantoblanco 28049 Madrid Spain
Institute of Physics of the Czech Academy of Sciences 16200 Prague Czech Republic
Nanomaterials and Nanotechnology Research Center CSIC UNIOVI PA 33940 El Entrego Spain
Zobrazit více v PubMed
Celis A.; Nair M. N.; Taleb-Ibrahimi A.; Conrad E. H.; Berger C.; Heer W. A.; Tejeda A. Graphene Nanoribbons: Fabrication, Properties and Devices. J. Phys. D: Appl. Phys. 2016, 49 (14), 14300110.1088/0022-3727/49/14/143001. DOI
Gröning O.; Wang S.; Yao X.; Pignedoli C. A.; Borin Barin G.; Daniels C.; Cupo A.; Meunier V.; Feng X.; Narita A.; Müllen K.; Ruffieux P.; Fasel R. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature 2018, 560 (7717), 209–213. 10.1038/s41586-018-0375-9. PubMed DOI
Marmolejo-Tejada J. M.; Velasco-Medina J. Review on Graphene Nanoribbon Devices for Logic Applications. Microelectronics Journal 2016, 48, 18–38. 10.1016/j.mejo.2015.11.006. DOI
Geng Z.; Hähnlein B.; Granzner R.; Auge M.; Lebedev A. A.; Davydov V. Y.; Kittler M.; Pezoldt J.; Schwierz F. Graphene Nanoribbons for Electronic Devices. Annal. Phys. 2017, 529 (11), 170003310.1002/andp.201700033. DOI
Wang H.; Wang H. S.; Ma C.; Chen L.; Jiang C.; Chen C.; Xie X.; Li A.-P.; Wang X. Graphene Nanoribbons for Quantum Electronics. Nat. Rev. Phys. 2021, 3 (12), 791–802. 10.1038/s42254-021-00370-x. DOI
Han M. Y.; Özyilmaz B.; Zhang Y.; Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 2007, 98 (20), 20680510.1103/PhysRevLett.98.206805. PubMed DOI
Chen Z.; Lin Y.-M.; Rooks M. J.; Avouris P. Graphene Nano-Ribbon Electronics. Physica E: Low-dimensional Systems and Nanostructures 2007, 40 (2), 228–232. 10.1016/j.physe.2007.06.020. DOI
Shende P.; Augustine S.; Prabhakar B. A Review on Graphene Nanoribbons for Advanced Biomedical Applications. Carbon Lett. 2020, 30 (5), 465–475. 10.1007/s42823-020-00125-1. DOI
Dong L.; Liu P. N.; Lin N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48 (10), 2765–2774. 10.1021/acs.accounts.5b00160. PubMed DOI
Held P. A.; Fuchs H.; Studer A. Covalent-Bond Formation via On-Surface Chemistry. Chemistry–A. European Journal 2017, 23 (25), 5874–5892. 10.1002/chem.201604047. PubMed DOI
Wang T.; Zhu J. Confined On-Surface Organic Synthesis: Strategies and Mechanisms. Surf. Sci. Rep. 2019, 74 (2), 97–140. 10.1016/j.surfrep.2019.05.001. DOI
Clair S.; de Oteyza D. G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119 (7), 4717–4776. 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Rizzo D. J.; Veber G.; Cao T.; Bronner C.; Chen T.; Zhao F.; Rodriguez H.; Louie S. G.; Crommie M. F.; Fischer F. R. Topological Band Engineering of Graphene Nanoribbons. Nature 2018, 560 (7717), 204–208. 10.1038/s41586-018-0376-8. PubMed DOI
Cao T.; Zhao F.; Louie S. G. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Phys. Rev. Lett. 2017, 119 (7), 07640110.1103/PhysRevLett.119.076401. PubMed DOI
Li J.; Sanz S.; Merino-Díez N.; Vilas-Varela M.; Garcia-Lekue A.; Corso M.; de Oteyza D. G.; Frederiksen T.; Peña D.; Pascual J. I. Topological Phase Transition in Chiral Graphene Nanoribbons: From Edge Bands to End States. Nat. Commun. 2021, 12 (1), 5538.10.1038/s41467-021-25688-z. PubMed DOI PMC
Rizzo D. J.; Veber G.; Jiang J.; McCurdy R.; Cao T.; Bronner C.; Chen T.; Louie S. G.; Fischer F. R.; Crommie M. F. Inducing Metallicity in Graphene Nanoribbons via Zero-Mode Superlattices. Science 2020, 369 (6511), 1597–1603. 10.1126/science.aay3588. PubMed DOI
Sun Q.; Yao X.; Gröning O.; Eimre K.; Pignedoli C. A.; Müllen K.; Narita A.; Fasel R.; Ruffieux P. Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Lett. 2020, 20 (9), 6429–6436. 10.1021/acs.nanolett.0c02077. PubMed DOI
Sun Q.; Gröning O.; Overbeck J.; Braun O.; Perrin M. L.; Borin Barin G.; El Abbassi M.; Eimre K.; Ditler E.; Daniels C.; Meunier V.; Pignedoli C. A.; Calame M.; Fasel R.; Ruffieux P. Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Adv. Mater. 2020, 32 (12), 190605410.1002/adma.201906054. PubMed DOI
Jacobse P. H.; Sarker M.; Saxena A.; Zahl P.; Wang Z.; Berger E.; Aluru N. R.; Sinitskii A.; Crommie M. F. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. Small 2024, 20, 240047310.1002/smll.202400473. PubMed DOI
Luu T.; Meißner U.-G.; Razmadze L. Localization of Electronic States in Hybrid Nanoribbons in the Nonperturbative Regime. Phys. Rev. B 2022, 106 (19), 19542210.1103/PhysRevB.106.195422. DOI
Jacobse P. H.; Daugherty M. C.; Čerṇevičs K.; Wang Z.; McCurdy R. D.; Yazyev O. V.; Fischer F. R.; Crommie M. F. Five-Membered Rings Create Off-Zero Modes in Nanographene. ACS Nano 2023, 17 (24), 24901–24909. 10.1021/acsnano.3c06006. PubMed DOI PMC
Rizzo D. J.; Jiang J.; Joshi D.; Veber G.; Bronner C.; Durr R. A.; Jacobse P. H.; Cao T.; Kalayjian A.; Rodriguez H.; Butler P.; Chen T.; Louie S. G.; Fischer F. R.; Crommie M. F. Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons. ACS Nano 2021, 15 (12), 20633–20642. 10.1021/acsnano.1c09503. PubMed DOI PMC
Wang S.; Kharche N.; Costa Girão E.; Feng X.; Müllen K.; Meunier V.; Fasel R.; Ruffieux P. Quantum Dots in Graphene Nanoribbons. Nano Lett. 2017, 17 (7), 4277–4283. 10.1021/acs.nanolett.7b01244. PubMed DOI
Chen Y.-C.; Cao T.; Chen C.; Pedramrazi Z.; Haberer D.; de Oteyza D. G.; Fischer F. R.; Louie S. G.; Crommie M. F. Molecular Bandgap Engineering of Bottom-up Synthesized Graphene Nanoribbon Heterojunctions. Nat. Nanotechnol. 2015, 10 (2), 156–160. 10.1038/nnano.2014.307. PubMed DOI
Ruffieux P.; Cai J.; Plumb N. C.; Patthey L.; Prezzi D.; Ferretti A.; Molinari E.; Feng X.; Müllen K.; Pignedoli C. A.; Fasel R. Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano 2012, 6 (8), 6930–6935. 10.1021/nn3021376. PubMed DOI
Carbonell-Sanromà E.; Brandimarte P.; Balog R.; Corso M.; Kawai S.; Garcia-Lekue A.; Saito S.; Yamaguchi S.; Meyer E.; Sánchez-Portal D.; Pascual J. I. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution. Nano Lett. 2017, 17 (1), 50–56. 10.1021/acs.nanolett.6b03148. PubMed DOI
Hla S.-W.; Bartels L.; Meyer G.; Rieder K.-H. Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Phys. Rev. Lett. 2000, 85 (13), 2777–2780. 10.1103/PhysRevLett.85.2777. PubMed DOI
Ho W. Single-Molecule Chemistry. J. Chem. Phys. 2002, 117 (24), 11033–11061. 10.1063/1.1521153. DOI
Zhao A.; Tan S.; Li B.; Wang B.; Yang J.; Hou J. G. STM Tip-Assisted Single Molecule Chemistry. Phys. Chem. Chem. Phys. 2013, 15 (30), 12428–12441. 10.1039/c3cp51446c. PubMed DOI
Gross L.; Mohn F.; Moll N.; Liljeroth P.; Meyer G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325 (5944), 1110–1114. 10.1126/science.1176210. PubMed DOI
Jelínek P. High Resolution SPM Imaging of Organic Molecules with Functionalized Tips. J. Phys.: Condens. Matter 2017, 29 (34), 343002.10.1088/1361-648X/aa76c7. PubMed DOI
Biswas K.; Soler D.; Mishra S.; Chen Q.; Yao X.; Sánchez-Grande A.; Eimre K.; Mutombo P.; Martín-Fuentes C.; Lauwaet K.; Gallego J. M.; Ruffieux P.; Pignedoli C. A.; Müllen K.; Miranda R.; Urgel J. I.; Narita A.; Fasel R.; Jelínek P.; Écija D. Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J. Am. Chem. Soc. 2023, 145 (5), 2968–2974. 10.1021/jacs.2c11431. PubMed DOI
Cirera B.; Sánchez-Grande A.; de la Torre B.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mallada B.; Zbořil R.; Miranda R.; Gröning O.; Jelínek P.; Martín N.; Ecija D. Tailoring Topological Order and π-Conjugation to Engineer Quasi-Metallic Polymers. Nat. Nanotechnol. 2020, 15 (6), 437–443. 10.1038/s41565-020-0668-7. PubMed DOI
González-Herrero H.; Mendieta-Moreno J. I.; Edalatmanesh S.; Santos J.; Martín N.; Écija D.; de la Torre B.; Jelinek P. Atomic Scale Control and Visualization of Topological Quantum Phase Transition in π-Conjugated Polymers Driven by Their Length. Adv. Mater. 2021, 33 (44), 210449510.1002/adma.202104495. PubMed DOI
Zuzak R.; Dorel R.; Krawiec M.; Such B.; Kolmer M.; Szymonski M.; Echavarren A. M.; Godlewski S. Nonacene Generated by On-Surface Dehydrogenation. ACS Nano 2017, 11 (9), 9321–9329. 10.1021/acsnano.7b04728. PubMed DOI
Zhao C.; Huang Q.; Valenta L.; Eimre K.; Yang L.; Yakutovich A. V.; Xu W.; Ma J.; Feng X.; Juríček M.; Fasel R.; Ruffieux P.; Pignedoli C. A. Tailoring Magnetism of Graphene Nanoflakes via Tip-Controlled Dehydrogenation. Phys. Rev. Lett. 2024, 132 (4), 04620110.1103/PhysRevLett.132.046201. PubMed DOI
Kondo J. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964, 32 (1), 37–49. 10.1143/PTP.32.37. DOI
Ternes M.; Heinrich A. J.; Schneider W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys.: Condens. Matter 2009, 21 (5), 05300110.1088/0953-8984/21/5/053001. PubMed DOI
Anderson P. W. Localized Magnetic States in Metals. Phys. Rev. 1961, 124 (1), 41–53. 10.1103/PhysRev.124.41. DOI
Li J.; Sanz S.; Corso M.; Choi D. J.; Peña D.; Frederiksen T.; Pascual J. I. Single Spin Localization and Manipulation in Graphene Open-Shell Nanostructures. Nat. Commun. 2019, 10 (1), 200.10.1038/s41467-018-08060-6. PubMed DOI PMC
Bhattacharjee R.; Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. Chem. Mater. 2024, 36 (3), 1395–1404. 10.1021/acs.chemmater.3c02547. PubMed DOI PMC
Wang T.; Sanz S.; Castro-Esteban J.; Lawrence J.; Berdonces-Layunta A.; Mohammed M. S. G.; Vilas-Varela M.; Corso M.; Peña D.; Frederiksen T.; de Oteyza D. G. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. Nano Lett. 2022, 22 (1), 164–171. 10.1021/acs.nanolett.1c03578. PubMed DOI
Mishra S.; Beyer D.; Eimre K.; Kezilebieke S.; Berger R.; Gröning O.; Pignedoli C. A.; Müllen K.; Liljeroth P.; Ruffieux P.; Feng X.; Fasel R. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020, 15 (1), 22–28. 10.1038/s41565-019-0577-9. PubMed DOI
Zheng Y.; Li C.; Zhao Y.; Beyer D.; Wang G.; Xu C.; Yue X.; Chen Y.; Guan D.-D.; Li Y.-Y.; Zheng H.; Liu C.; Luo W.; Feng X.; Wang S.; Jia J. Engineering of Magnetic Coupling in Nanographene. Phys. Rev. Lett. 2020, 124 (14), 14720610.1103/PhysRevLett.124.147206. PubMed DOI
Zheng Y.; Li C.; Xu C.; Beyer D.; Yue X.; Zhao Y.; Wang G.; Guan D.; Li Y.; Zheng H.; Liu C.; Liu J.; Wang X.; Luo W.; Feng X.; Wang S.; Jia J. Designer Spin Order in Diradical Nanographenes. Nat. Commun. 2020, 11 (1), 6076.10.1038/s41467-020-19834-2. PubMed DOI PMC
Ternes M. Spin Excitations and Correlations in Scanning Tunneling Spectroscopy. New J. Phys. 2015, 17 (6), 06301610.1088/1367-2630/17/6/063016. DOI
Abe M. Diradicals. Chem. Rev. 2013, 113 (9), 7011–7088. 10.1021/cr400056a. PubMed DOI
Mishra S.; Yao X.; Chen Q.; Eimre K.; Gröning O.; Ortiz R.; Di Giovannantonio M.; Sancho-García J. C.; Fernández-Rossier J.; Pignedoli C. A.; Müllen K.; Ruffieux P.; Narita A.; Fasel R. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021, 13 (6), 581–586. 10.1038/s41557-021-00678-2. PubMed DOI
Li L.; Nuckolls C.; Venkataraman L. Designing Long and Highly Conducting Molecular Wires with Multiple Nontrivial Topological States. J. Phys. Chem. Lett. 2023, 14 (22), 5141–5147. 10.1021/acs.jpclett.3c01081. PubMed DOI
Li L.; Louie S.; Evans A. M.; Meirzadeh E.; Nuckolls C.; Venkataraman L. Topological Radical Pairs Produce Ultrahigh Conductance in Long Molecular Wires. J. Am. Chem. Soc. 2023, 145 (4), 2492–2498. 10.1021/jacs.2c12059. PubMed DOI
Li L.; Gunasekaran S.; Wei Y.; Nuckolls C.; Venkataraman L. Reversed Conductance Decay of 1D Topological Insulators by Tight-Binding Analysis. J. Phys. Chem. Lett. 2022, 13 (41), 9703–9710. 10.1021/acs.jpclett.2c02812. PubMed DOI
Sánchez-Grande A.; Urgel J. I.; Cahlík A.; Santos J.; Edalatmanesh S.; Rodríguez-Sánchez E.; Lauwaet K.; Mutombo P.; Nachtigallová D.; Nieman R.; Lischka H.; de la Torre B.; Miranda R.; Gröning O.; Martín N.; Jelínek P.; Écija D. Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface. Angew. Chem., Int. Ed. 2020, 59 (40), 17594–17599. 10.1002/anie.202006276. PubMed DOI PMC
de la Torre B.; Švec M.; Foti G.; Krejčí O.; Hapala P.; Garcia-Lekue A.; Frederiksen T.; Zbořil R.; Arnau A.; Vázquez H.; Jelínek P. Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and Its Relation to the AFM/STM Signal. Phys. Rev. Lett. 2017, 119 (16), 16600110.1103/PhysRevLett.119.166001. PubMed DOI
González-Herrero H.; Gómez-Rodríguez J. M.; Mallet P.; Moaied M.; Palacios J. J.; Salgado C.; Ugeda M. M.; Veuillen J.-Y.; Yndurain F.; Brihuega I. Atomic-Scale Control of Graphene Magnetism by Using Hydrogen Atoms. Science 2016, 352, 437.10.1126/science.aad803. PubMed DOI
Su J.; Fan W.; Mutombo P.; Peng X.; Song S.; Ondráček M.; Golub P.; Brabec J.; Veis L.; Telychko M.; Jelínek P.; Wu J.; Lu J. On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Lett. 2021, 21 (1), 861–867. 10.1021/acs.nanolett.0c04627. PubMed DOI
Du Q.; Su X.; Liu Y.; Jiang Y.; Li C.; Yan K.; Ortiz R.; Frederiksen T.; Wang S.; Yu P. Orbital-Symmetry Effects on Magnetic Exchange in Open-Shell Nanographenes. Nat. Commun. 2023, 14 (1), 4802.10.1038/s41467-023-40542-0. PubMed DOI PMC
Frota H. O. Shape of the Kondo Resonance. Phys. Rev. B 1992, 45 (3), 1096–1099. 10.1103/PhysRevB.45.1096. PubMed DOI
Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78 (1), 01370510.1063/1.2432410. PubMed DOI
Schüler M.; Rösner M.; Wehling T. O.; Lichtenstein A. I.; Katsnelson M. I. Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions: Graphene, Silicene, and Benzene. Phys. Rev. Lett. 2013, 111 (3), 03660110.1103/PhysRevLett.111.036601. PubMed DOI