CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-22765S
Grantová Agentura České Republiky
PubMed
30322039
PubMed Central
PMC6214008
DOI
10.3390/ijms19103138
PII: ijms19103138
Knihovny.cz E-zdroje
- Klíčová slova
- CPEB2, CPEBs, embryonic development, oocyte maturation, translational control,
- MeSH
- 3' nepřekládaná oblast MeSH
- embryonální vývoj MeSH
- genový knockdown MeSH
- meióza * MeSH
- messenger RNA metabolismus MeSH
- oocyty cytologie metabolismus MeSH
- partenogeneze MeSH
- prasata MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- messenger RNA MeSH
- proteiny vázající RNA MeSH
Oocyte meiotic maturation and embryogenesis are some of the most important physiological processes that occur in organisms, playing crucial roles in the preservation of life in all species. The post-transcriptional regulation of maternal messenger ribonucleic acids (mRNAs) and the post-translational regulation of proteins are critical in the control of oocyte maturation and early embryogenesis. Translational control affects the basic mechanism of protein synthesis, thus, knowledge of the key components included in this machinery is required in order to understand its regulation. Cytoplasmic polyadenylation element binding proteins (CPEBs) bind to the 3'-end of mRNAs to regulate their localization and translation and are necessary for proper development. In this study we examined the expression pattern of cytoplasmic polyadenylation element binding protein 2 (CPEB2) both on the mRNA (by real-time quantitative reverse transcription polymerase chain reaction, qRT-PCR) and protein (by Western blotting, WB) level, as well as its localization during the meiotic maturation of porcine oocytes and early embryonic development by immunocytochemistry (ICC). For the elucidation of its functions, CPEB2 knockdown by double-strand RNA (dsRNA) was used. We discovered that CPEB2 is expressed during all stages of porcine meiotic maturation and embryonic development. Moreover, we found that it is necessary to enable a high percentage of oocytes to reach the metaphase II (MII) stage, as well as for the production of good-quality parthenogenetic blastocysts.
Zobrazit více v PubMed
Belloc E., Pique M., Mendez R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem. Soc. Trans. 2008;36:665–670. doi: 10.1042/BST0360665. PubMed DOI
Huarte J., Stutz A., O’Connell M.L., Gubler P., Belin D., Darrow A.L., Strickland S., Vassalli J.D. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–1030. doi: 10.1016/0092-8674(92)90620-R. PubMed DOI
Liang C., Su Y., Fan H., Schatten H., Sun Q. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol. Endocrinol. 2007;21:2037–2055. doi: 10.1210/me.2006-0408. PubMed DOI
Nagaike T., Manley J.L. Transcriptional activators enhance polyadenylation precursors of mRNA. RNA Biol. 2011;8:964–967. doi: 10.4161/rna.8.6.17210. PubMed DOI PMC
Proudfoot N.J. Ending the message: Poly(A) signals then and now. Genes Dev. 2011;25:1770–1782. doi: 10.1101/gad.17268411. PubMed DOI PMC
Eckmann C.R., Rammelt C., Wahle E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA. 2011;3:348–361. doi: 10.1002/wrna.56. PubMed DOI
Osborne H.B., Richter J.D. Translational control by polyadenylation during early development. Prog. Mol. Subcell. Biol. 1997;18:173–198. PubMed
Duranthon V., Renard J.-P. Storage and functional recovery of molecules in oocyte. In: Trounson A.O., Gosden R.D., editors. Biology and Pathology of the Oocyte: Its Role in Fertility and Reproductive Medicine. Cambridge University Press; Cambridge, UK: 2003. pp. 81–112.
Kang M.K., Han S.J. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep. 2011;44:147–157. doi: 10.5483/BMBRep.2011.44.3.147. PubMed DOI
Hake L.E., Richter J.D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–627. doi: 10.1016/0092-8674(94)90547-9. PubMed DOI
Du L., Richter J.D. Activity-dependent polyadenylation in neurons. RNA. 2005;11:1340–1347. doi: 10.1261/rna.2870505. PubMed DOI PMC
Mendez R., Richter J.D. Translational control by CPEB: A means to the end. Nat. Rev. Mol. Cell Biol. 2001;2:521–529. doi: 10.1038/35080081. PubMed DOI
Huang Y.S., Kan M.C., Lin C.L., Richter J.D. CPEB3 and CPEB4 in neurons: Analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006;25:4865–4876. doi: 10.1038/sj.emboj.7601322. PubMed DOI PMC
Theis M., Si K., Kandel E.R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl. Acad. Sci. USA. 2003;100:9602–72003. doi: 10.1073/pnas.1133424100. PubMed DOI PMC
Wang X.P., Cooper N.G. Comparative in Silico Analyses of Cpeb1–4 with Functional predictions. Bioinform. Biol. Insights. 2010;4:61–83. doi: 10.4137/BBI.S5087. PubMed DOI PMC
Wu L., Wells D., Tay J., Mendis D., Abott M.A., Barnitt A., Quinlan E., Heynen A., Fallon J.R., Richter J.D. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron. 1998;21:1129–1139. doi: 10.1016/S0896-6273(00)80630-3. PubMed DOI
Hochegger H., Klotzbücher A., Kirk J., Howell M., le Guellec K., Fletcher K., Duncan T., Sohail M., Hunt T. New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development. 2001;128:3795–3807. PubMed
Kim K.C., Oha W.J., Koa K.H., Shinb C.Y., Wells D.G. Cyclin B1 expression regulated by cytoplasmic polyadenylation element binding protein in astrocytes. J. Neurosci. 2011;31:12118–12128. doi: 10.1523/JNEUROSCI.1621-11.2011. PubMed DOI PMC
Mendez R., Barnard D., Richter J.D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002;21:1833–1844. doi: 10.1093/emboj/21.7.1833. PubMed DOI PMC
Minshull J., Blow J.J., Hunt T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 1989;56:947–956. doi: 10.1016/0092-8674(89)90628-4. PubMed DOI
Murray A.W., Kirschner M.W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989;339:275–280. doi: 10.1038/339275a0. PubMed DOI
Novoa I., Gallego J., Ferreira P.G., Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat. Cell Biol. 2010;12:447–456. doi: 10.1038/ncb2046. PubMed DOI
Hägelle S., Kühn U., Böning M., Katschinski D.M. Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1α mRNA 3 -UTR and modulate HIF-1α protein expression. Biochem. J. 2009;417:235–246. doi: 10.1042/BJ20081353. PubMed DOI
Turimella S.L., Bedner P., Skubal M., Vangoor V.R., Kaczmarczyk L., Karl K., Zoidl G., Gieselmann V., Seifert G., Steinhauser C., et al. Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity. Hippocampus. 2014 doi: 10.1002/hipo.22399. PubMed DOI
Chen P.J., Huang Y.S. CPEB2-eEF2 interaction impedes HIF-1α RNA translation. EMBO J. 2012;31:959–971. doi: 10.1038/emboj.2011.448. PubMed DOI PMC
Jansova D., Tetkova A., Koncicka M., Kubelka M., Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS ONE. 2018;13:e0192544. doi: 10.1371/journal.pone.0192544. PubMed DOI PMC
Kurihara Y., Tokuriki M., Myojin R., Hori T., Kuroiwa A., Matsuda Y., Sakurai T., Kimura M., Hecht N.B., Uesugi S. CPEB2, A Novel Putative Translational Regulator in Mouse Haploid Germ Cells. Biol. Reprod. 2003;69:261–268. doi: 10.1095/biolreprod.103.015677. PubMed DOI
Johnson R.M., Vu N.T., Griffin B.P., Gentry A.E., Archer K.J. Chalfant CE5, Park MA6The alternative splicing of cytoplasmic polyadenylation element binding protein 2 drives anoikis resistance and the metastasis of triple negative breast cancer. J. Biol. Chem. 2015;290:25717–25727. doi: 10.1074/jbc.M115.671206. PubMed DOI PMC
Sus Scrofa Cytoplasmic Polyadenylation Element Binding Protein 2 Variant A. (CPEB2) mRNA, Complete CDS. [(accessed on 24 March 2010)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/HM037344.1.
Sus Scrofa Cytoplasmic Polyadenylation Element Binding Protein 2 Variant B. (CPEB2) mRNA, Complete CDS. [(accessed on 28 March 2010)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/HM037345.1.
Afroz T., Skrisovska L., Belloc E., Guillén-Boixet J., Méndez R., Allain F.H. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–1514. doi: 10.1101/gad.241133.114. PubMed DOI PMC
Eliscovich C., Peset I., Vernos I., Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat. Cell Biol. 2008;10:858–865. doi: 10.1038/ncb1746. PubMed DOI
Fernández-Miranda G., Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 2012;11:460–472. doi: 10.1016/j.arr.2012.03.004. PubMed DOI
Groisman I., Huang Y.S., Mendez R., Cao Q., Theurkauf W., Richter J.D. CPEB, Maskin, and Cyclin B1 mRNA at the Mitotic Apparatus. Cell. 2000;103:435–447. doi: 10.1016/S0092-8674(00)00135-5. PubMed DOI
Macnicol M.C., Cragle C.E., Arumugam K., Fosso B., Pesole G., MacNicol A.M. Functional Integration of mRNA Translational Control Programs. Biomolecules. 2015;5:1580–1599. doi: 10.3390/biom5031580. PubMed DOI PMC
Richter J.D. CPEB: A life in translation. Trends Biochem. Sci. 2007;32:279–285. doi: 10.1016/j.tibs.2007.04.004. PubMed DOI
Lai Y.T., Su C.K., Jiang S.T., Chang Y.J., Lai A.C., Huang Y.S. Deficiency of CPEB2-Confined Choline Acetyltransferase Expression in the Dorsal Motor Nucleus of Vagus Causes Hyperactivated Parasympathetic Signaling-Associated Bronchoconstriction. J. Neurosci. 2016;36:12661–12676. doi: 10.1523/JNEUROSCI.0557-16.2016. PubMed DOI PMC
Komrskova P., Susor A., Malik R., Prochazkova B., Liskova L., Supolikova J., Hladky S., Kubelka M. Aurora Kinase A Is Not Involved in CPEB1 Phosphorylation and cyclin B1 mRNA Polyadenylation during Meiotic Maturation of Porcine Oocytes. PLoS ONE. 2014;9:e101222. doi: 10.1371/journal.pone.0101222. PubMed DOI PMC
Jarrell V.L., Day B.N., Prather R.S. The Transition from Maternal to Zygotic Control of Development Occurs during the 4-Cell Stage in the Domestic Pig, Sus scrofa: Quantitative and Qualitative Aspects of Protein Synthesis. Biol. Reprod. 1991;44:62–68. doi: 10.1095/biolreprod44.1.62. PubMed DOI
Kan M.C., Oruganty-Das A., Cooper-Morgan A., Jin G., Swanger S.A., Bassell G.J., Florman H., van Leyen K., Richter J.D. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol. Cell. Biol. 2010;30:5658–5671. doi: 10.1128/MCB.00716-10. PubMed DOI PMC
Kundel M., Jones K.J., Shin C.Y., Wells D.G. Cellular/Molecular Cytoplasmic Polyadenylation Element-Binding Protein Regulates Neurotrophin-3-Dependent β-Catenin mRNA Translation in Developing Hippocampal Neurons. J. Neurosci. 2009;29:13630–13639. doi: 10.1523/JNEUROSCI.2910-08.2009. PubMed DOI PMC
Clevers H., Nusse R. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI
Kumar M., Camlin N.J., Holt J.E., Teixeira J.M., McLaughlin E.A., Tanwar P.S. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development. Sci. Rep. 2016;6 doi: 10.1038/srep27273. PubMed DOI PMC
Fan H.Y., Huo L.J., Meng X.Q., Zhong Z.S., Hou Y., Chen D.Y., Sun Q.Y. Involvement of Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) in Meiotic Maturation and Activation of Pig Oocytes1. Biol. Reprod. 2003;69:1552–1564. doi: 10.1095/biolreprod.103.015685. PubMed DOI
Tay J., Richter J.D. Germ Cell Differentiation and Synaptonemal Complex Formation Are Disrupted in CPEB Knockout Mice. Dev. Cell. 2001;1:201–213. doi: 10.1016/S1534-5807(01)00025-9. PubMed DOI
Racki W.J., Richter J.D. CPEB controls oocyte growth and follicle development in the mouse. Development. 2006;133:4527–4537. doi: 10.1242/dev.02651. PubMed DOI
Stebbins-Boaz B., Hake L.E., Richter J.D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996;15:2582–2592. doi: 10.1002/j.1460-2075.1996.tb00616.x. PubMed DOI PMC
Prochazkova B. (Institute for Research in Biomedicine, Barcelona, Spain). Personal communication. 2016.
Nairismägi M.L., Vislovukh A., Meng Q., Kratassiouk G., Beldiman C., Petretich M., Groisman R., Füchtbauer E.M., Harel-Bellan A., Groisman I. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012;31:4960–4966. doi: 10.1038/onc.2011.650. PubMed DOI
Fuchtbauer E.M. Expression of M-Twist During Postimplantation Development of the Mouse. Dev. Dyn. 1995;204:316–322. doi: 10.1002/aja.1002040309. PubMed DOI
Gitelman I. Twist Protein in Mouse Embryogenesis. Dev. Biol. 1997;189:205–214. doi: 10.1006/dbio.1997.8614. PubMed DOI
Matter K., Aijaz S., Tsapara A., Balda M.S. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr. Opin. Cell Biol. 2005;17:453–458. doi: 10.1016/j.ceb.2005.08.003. PubMed DOI
Nagaoka K., Udagawa T., Richter J.D. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat. Commun. 2012;3 doi: 10.1038/ncomms1678. PubMed DOI PMC
Hartsock A., Nelson W.J. Adherens and Tight Junctions: Structure, Function and Connections to the Actin Cytoskeleton. Biochim. Biophys. Acta. 2008;1778:660–669. doi: 10.1016/j.bbamem.2007.07.012. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI