CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development

. 2018 Oct 12 ; 19 (10) : . [epub] 20181012

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30322039

Grantová podpora
15-22765S Grantová Agentura České Republiky

Oocyte meiotic maturation and embryogenesis are some of the most important physiological processes that occur in organisms, playing crucial roles in the preservation of life in all species. The post-transcriptional regulation of maternal messenger ribonucleic acids (mRNAs) and the post-translational regulation of proteins are critical in the control of oocyte maturation and early embryogenesis. Translational control affects the basic mechanism of protein synthesis, thus, knowledge of the key components included in this machinery is required in order to understand its regulation. Cytoplasmic polyadenylation element binding proteins (CPEBs) bind to the 3'-end of mRNAs to regulate their localization and translation and are necessary for proper development. In this study we examined the expression pattern of cytoplasmic polyadenylation element binding protein 2 (CPEB2) both on the mRNA (by real-time quantitative reverse transcription polymerase chain reaction, qRT-PCR) and protein (by Western blotting, WB) level, as well as its localization during the meiotic maturation of porcine oocytes and early embryonic development by immunocytochemistry (ICC). For the elucidation of its functions, CPEB2 knockdown by double-strand RNA (dsRNA) was used. We discovered that CPEB2 is expressed during all stages of porcine meiotic maturation and embryonic development. Moreover, we found that it is necessary to enable a high percentage of oocytes to reach the metaphase II (MII) stage, as well as for the production of good-quality parthenogenetic blastocysts.

Zobrazit více v PubMed

Belloc E., Pique M., Mendez R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem. Soc. Trans. 2008;36:665–670. doi: 10.1042/BST0360665. PubMed DOI

Huarte J., Stutz A., O’Connell M.L., Gubler P., Belin D., Darrow A.L., Strickland S., Vassalli J.D. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–1030. doi: 10.1016/0092-8674(92)90620-R. PubMed DOI

Liang C., Su Y., Fan H., Schatten H., Sun Q. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol. Endocrinol. 2007;21:2037–2055. doi: 10.1210/me.2006-0408. PubMed DOI

Nagaike T., Manley J.L. Transcriptional activators enhance polyadenylation precursors of mRNA. RNA Biol. 2011;8:964–967. doi: 10.4161/rna.8.6.17210. PubMed DOI PMC

Proudfoot N.J. Ending the message: Poly(A) signals then and now. Genes Dev. 2011;25:1770–1782. doi: 10.1101/gad.17268411. PubMed DOI PMC

Eckmann C.R., Rammelt C., Wahle E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA. 2011;3:348–361. doi: 10.1002/wrna.56. PubMed DOI

Osborne H.B., Richter J.D. Translational control by polyadenylation during early development. Prog. Mol. Subcell. Biol. 1997;18:173–198. PubMed

Duranthon V., Renard J.-P. Storage and functional recovery of molecules in oocyte. In: Trounson A.O., Gosden R.D., editors. Biology and Pathology of the Oocyte: Its Role in Fertility and Reproductive Medicine. Cambridge University Press; Cambridge, UK: 2003. pp. 81–112.

Kang M.K., Han S.J. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep. 2011;44:147–157. doi: 10.5483/BMBRep.2011.44.3.147. PubMed DOI

Hake L.E., Richter J.D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–627. doi: 10.1016/0092-8674(94)90547-9. PubMed DOI

Du L., Richter J.D. Activity-dependent polyadenylation in neurons. RNA. 2005;11:1340–1347. doi: 10.1261/rna.2870505. PubMed DOI PMC

Mendez R., Richter J.D. Translational control by CPEB: A means to the end. Nat. Rev. Mol. Cell Biol. 2001;2:521–529. doi: 10.1038/35080081. PubMed DOI

Huang Y.S., Kan M.C., Lin C.L., Richter J.D. CPEB3 and CPEB4 in neurons: Analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006;25:4865–4876. doi: 10.1038/sj.emboj.7601322. PubMed DOI PMC

Theis M., Si K., Kandel E.R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl. Acad. Sci. USA. 2003;100:9602–72003. doi: 10.1073/pnas.1133424100. PubMed DOI PMC

Wang X.P., Cooper N.G. Comparative in Silico Analyses of Cpeb1–4 with Functional predictions. Bioinform. Biol. Insights. 2010;4:61–83. doi: 10.4137/BBI.S5087. PubMed DOI PMC

Wu L., Wells D., Tay J., Mendis D., Abott M.A., Barnitt A., Quinlan E., Heynen A., Fallon J.R., Richter J.D. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron. 1998;21:1129–1139. doi: 10.1016/S0896-6273(00)80630-3. PubMed DOI

Hochegger H., Klotzbücher A., Kirk J., Howell M., le Guellec K., Fletcher K., Duncan T., Sohail M., Hunt T. New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development. 2001;128:3795–3807. PubMed

Kim K.C., Oha W.J., Koa K.H., Shinb C.Y., Wells D.G. Cyclin B1 expression regulated by cytoplasmic polyadenylation element binding protein in astrocytes. J. Neurosci. 2011;31:12118–12128. doi: 10.1523/JNEUROSCI.1621-11.2011. PubMed DOI PMC

Mendez R., Barnard D., Richter J.D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002;21:1833–1844. doi: 10.1093/emboj/21.7.1833. PubMed DOI PMC

Minshull J., Blow J.J., Hunt T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 1989;56:947–956. doi: 10.1016/0092-8674(89)90628-4. PubMed DOI

Murray A.W., Kirschner M.W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989;339:275–280. doi: 10.1038/339275a0. PubMed DOI

Novoa I., Gallego J., Ferreira P.G., Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat. Cell Biol. 2010;12:447–456. doi: 10.1038/ncb2046. PubMed DOI

Hägelle S., Kühn U., Böning M., Katschinski D.M. Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1α mRNA 3 -UTR and modulate HIF-1α protein expression. Biochem. J. 2009;417:235–246. doi: 10.1042/BJ20081353. PubMed DOI

Turimella S.L., Bedner P., Skubal M., Vangoor V.R., Kaczmarczyk L., Karl K., Zoidl G., Gieselmann V., Seifert G., Steinhauser C., et al. Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity. Hippocampus. 2014 doi: 10.1002/hipo.22399. PubMed DOI

Chen P.J., Huang Y.S. CPEB2-eEF2 interaction impedes HIF-1α RNA translation. EMBO J. 2012;31:959–971. doi: 10.1038/emboj.2011.448. PubMed DOI PMC

Jansova D., Tetkova A., Koncicka M., Kubelka M., Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS ONE. 2018;13:e0192544. doi: 10.1371/journal.pone.0192544. PubMed DOI PMC

Kurihara Y., Tokuriki M., Myojin R., Hori T., Kuroiwa A., Matsuda Y., Sakurai T., Kimura M., Hecht N.B., Uesugi S. CPEB2, A Novel Putative Translational Regulator in Mouse Haploid Germ Cells. Biol. Reprod. 2003;69:261–268. doi: 10.1095/biolreprod.103.015677. PubMed DOI

Johnson R.M., Vu N.T., Griffin B.P., Gentry A.E., Archer K.J. Chalfant CE5, Park MA6The alternative splicing of cytoplasmic polyadenylation element binding protein 2 drives anoikis resistance and the metastasis of triple negative breast cancer. J. Biol. Chem. 2015;290:25717–25727. doi: 10.1074/jbc.M115.671206. PubMed DOI PMC

Sus Scrofa Cytoplasmic Polyadenylation Element Binding Protein 2 Variant A. (CPEB2) mRNA, Complete CDS. [(accessed on 24 March 2010)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/HM037344.1.

Sus Scrofa Cytoplasmic Polyadenylation Element Binding Protein 2 Variant B. (CPEB2) mRNA, Complete CDS. [(accessed on 28 March 2010)]; Available online: https://www.ncbi.nlm.nih.gov/nuccore/HM037345.1.

Afroz T., Skrisovska L., Belloc E., Guillén-Boixet J., Méndez R., Allain F.H. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–1514. doi: 10.1101/gad.241133.114. PubMed DOI PMC

Eliscovich C., Peset I., Vernos I., Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat. Cell Biol. 2008;10:858–865. doi: 10.1038/ncb1746. PubMed DOI

Fernández-Miranda G., Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res. Rev. 2012;11:460–472. doi: 10.1016/j.arr.2012.03.004. PubMed DOI

Groisman I., Huang Y.S., Mendez R., Cao Q., Theurkauf W., Richter J.D. CPEB, Maskin, and Cyclin B1 mRNA at the Mitotic Apparatus. Cell. 2000;103:435–447. doi: 10.1016/S0092-8674(00)00135-5. PubMed DOI

Macnicol M.C., Cragle C.E., Arumugam K., Fosso B., Pesole G., MacNicol A.M. Functional Integration of mRNA Translational Control Programs. Biomolecules. 2015;5:1580–1599. doi: 10.3390/biom5031580. PubMed DOI PMC

Richter J.D. CPEB: A life in translation. Trends Biochem. Sci. 2007;32:279–285. doi: 10.1016/j.tibs.2007.04.004. PubMed DOI

Lai Y.T., Su C.K., Jiang S.T., Chang Y.J., Lai A.C., Huang Y.S. Deficiency of CPEB2-Confined Choline Acetyltransferase Expression in the Dorsal Motor Nucleus of Vagus Causes Hyperactivated Parasympathetic Signaling-Associated Bronchoconstriction. J. Neurosci. 2016;36:12661–12676. doi: 10.1523/JNEUROSCI.0557-16.2016. PubMed DOI PMC

Komrskova P., Susor A., Malik R., Prochazkova B., Liskova L., Supolikova J., Hladky S., Kubelka M. Aurora Kinase A Is Not Involved in CPEB1 Phosphorylation and cyclin B1 mRNA Polyadenylation during Meiotic Maturation of Porcine Oocytes. PLoS ONE. 2014;9:e101222. doi: 10.1371/journal.pone.0101222. PubMed DOI PMC

Jarrell V.L., Day B.N., Prather R.S. The Transition from Maternal to Zygotic Control of Development Occurs during the 4-Cell Stage in the Domestic Pig, Sus scrofa: Quantitative and Qualitative Aspects of Protein Synthesis. Biol. Reprod. 1991;44:62–68. doi: 10.1095/biolreprod44.1.62. PubMed DOI

Kan M.C., Oruganty-Das A., Cooper-Morgan A., Jin G., Swanger S.A., Bassell G.J., Florman H., van Leyen K., Richter J.D. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol. Cell. Biol. 2010;30:5658–5671. doi: 10.1128/MCB.00716-10. PubMed DOI PMC

Kundel M., Jones K.J., Shin C.Y., Wells D.G. Cellular/Molecular Cytoplasmic Polyadenylation Element-Binding Protein Regulates Neurotrophin-3-Dependent β-Catenin mRNA Translation in Developing Hippocampal Neurons. J. Neurosci. 2009;29:13630–13639. doi: 10.1523/JNEUROSCI.2910-08.2009. PubMed DOI PMC

Clevers H., Nusse R. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI

Kumar M., Camlin N.J., Holt J.E., Teixeira J.M., McLaughlin E.A., Tanwar P.S. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development. Sci. Rep. 2016;6 doi: 10.1038/srep27273. PubMed DOI PMC

Fan H.Y., Huo L.J., Meng X.Q., Zhong Z.S., Hou Y., Chen D.Y., Sun Q.Y. Involvement of Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) in Meiotic Maturation and Activation of Pig Oocytes1. Biol. Reprod. 2003;69:1552–1564. doi: 10.1095/biolreprod.103.015685. PubMed DOI

Tay J., Richter J.D. Germ Cell Differentiation and Synaptonemal Complex Formation Are Disrupted in CPEB Knockout Mice. Dev. Cell. 2001;1:201–213. doi: 10.1016/S1534-5807(01)00025-9. PubMed DOI

Racki W.J., Richter J.D. CPEB controls oocyte growth and follicle development in the mouse. Development. 2006;133:4527–4537. doi: 10.1242/dev.02651. PubMed DOI

Stebbins-Boaz B., Hake L.E., Richter J.D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996;15:2582–2592. doi: 10.1002/j.1460-2075.1996.tb00616.x. PubMed DOI PMC

Prochazkova B. (Institute for Research in Biomedicine, Barcelona, Spain). Personal communication. 2016.

Nairismägi M.L., Vislovukh A., Meng Q., Kratassiouk G., Beldiman C., Petretich M., Groisman R., Füchtbauer E.M., Harel-Bellan A., Groisman I. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012;31:4960–4966. doi: 10.1038/onc.2011.650. PubMed DOI

Fuchtbauer E.M. Expression of M-Twist During Postimplantation Development of the Mouse. Dev. Dyn. 1995;204:316–322. doi: 10.1002/aja.1002040309. PubMed DOI

Gitelman I. Twist Protein in Mouse Embryogenesis. Dev. Biol. 1997;189:205–214. doi: 10.1006/dbio.1997.8614. PubMed DOI

Matter K., Aijaz S., Tsapara A., Balda M.S. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr. Opin. Cell Biol. 2005;17:453–458. doi: 10.1016/j.ceb.2005.08.003. PubMed DOI

Nagaoka K., Udagawa T., Richter J.D. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat. Commun. 2012;3 doi: 10.1038/ncomms1678. PubMed DOI PMC

Hartsock A., Nelson W.J. Adherens and Tight Junctions: Structure, Function and Connections to the Actin Cytoskeleton. Biochim. Biophys. Acta. 2008;1778:660–669. doi: 10.1016/j.bbamem.2007.07.012. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CPEB3 Maintains Developmental Competence of the Oocyte

. 2024 May 16 ; 13 (10) : . [epub] 20240516

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...