Resolving the adsorption of molecular O2 on the rutile TiO2(110) surface by noncontact atomic force microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 2460
Austrian Science Fund FWF - Austria
PubMed
32527857
PubMed Central
PMC7334520
DOI
10.1073/pnas.1922452117
PII: 1922452117
Knihovny.cz E-zdroje
- Klíčová slova
- O2, TiO2, nc-AFM, oxides, tip functionalization,
- Publikační typ
- časopisecké články MeSH
Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve [Formula: see text] adsorption on the rutile [Formula: see text](110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed [Formula: see text] molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.
Center for Computational Materials Science University of Vienna 1090 Vienna Austria
Central European Institute of Technology Brno University of Technology 612 00 Brno Czech Republic
Dipartimento di Fisica e Astronomia Università di Bologna 40127 Bologna Italy
Faculty of Physics University of Vienna 1090 Vienna Austria
Institute of Applied Physics Technische Universität Wien 1040 Vienna Austria
Institute of Applied Physics Technische Universität Wien 1040 Vienna Austria;
Institute of Physical Engineering Brno University of Technology 616 69 Brno Czech Republic
Zobrazit více v PubMed
Gurlo A., Riedel R., In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. Int. Ed. 46, 3826–3848 (2007). PubMed
Guo Z., et al. , Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014). PubMed
Montoya J. H., et al. , Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017). PubMed
Setvín M., et al. , Following the reduction of oxygen on TiO2 anatase (101) step by step. J. Am. Chem. Soc. 138, 9565–9571 (2016). PubMed
Szot K., et al. , TiO2–A prototypical memristive material. Nanotechnology 22, 254001 (2011). PubMed
Diebold U., The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).
Thompson T. L., Yates J. T.. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 106, 4428–4453 (2006). PubMed
Fujishima A., Zhang X., Tryk D. A., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).
Pang C. L., Lindsay R., Thornton G., Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008). PubMed
Liu L.-M., Crawford P., Hu P., The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog. Surf. Sci. 84, 155–176 (2009).
Yates J. T., Jr, Photochemistry on TiO2: Mechanisms behind the surface chemistry. Surf. Sci. 603, 1605–1612 (2009).
Dohnálek Z., Lyubinetsky I., Rousseau R., Thermally-driven processes on rutile TiO2(110)-(1
Henderson M. A., Lyubinetsky I., Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2(110). Chem. Rev. 113, 4428–4455 (2013). PubMed
Guo Q., et al. , Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016). PubMed
Morita S., Giessibl F. J., Meyer E., Wiesendanger R., Noncontact Atomic Force Microscopy (Springer, 2015), vol. 3.
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009). PubMed
Sugimoto Y., et al. , Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007). PubMed
Gross L., Mohn F., Liljeroth P., Giessibl F. J., Meyer G., Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009). PubMed
de la Torre B., et al. , Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat. Commun. 9, 2831 (2018). PubMed PMC
Fatayer S., et al. , Molecular structure elucidation with charge-state control. Science 365, 142–145 (2019). PubMed
Du Y., Dohnalek Z., Lyubinetsky I., Transient mobility of oxygen adatoms upon O2 dissociation on reduced TiO2(110). J. Phys. Chem. C 112, 2649–2653 (2008).
Petrik N. G., et al. , Chemical reactivity of reduced TiO2(110): The dominant role of surface defects in oxygen chemisorption. J. Phys. Chem. C 113, 12407–12411 (2009).
Du Y., et al. , Formation of O adatom pairs and charge transfer upon O2 dissociation on reduced TiO2(110). Phys. Chem. Chem. Phys. 12, 6337–6344 (2010). PubMed
Papageorgiou A. C., et al. , Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 107, 2391–2396 (2010). PubMed PMC
Arima E., Wen H. F., Naitoh Y., Li Y. J., Sugawara Y., KPFM/AFM imaging on TiO2(110) surface in O2 gas. Nanotechnology 29, 105504 (2018). PubMed
Zhang Q., et al. , Measurement and manipulation of the charge state of an adsorbed oxygen adatom on the rutile TiO2(110)-1 PubMed
Adachi Y., et al. , Tip-induced control of charge and molecular bonding of oxygen atoms on the rutile TiO2(110) surface with atomic force microscopy. ACS Nano 13, 6917–6924 (2019). PubMed
Wendt S., et al. , The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008). PubMed
Wendt S., et al. , Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 598, 226–245 (2005).
Lira E., et al. , Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): An STM and TPD study. Surf. Sci. 604, 1945–1960 (2010).
Lira E., et al. , Effects of the crystal reduction state on the interaction of oxygen with rutile TiO2(110). Catal. Today 182, 25–38 (2012).
Thompson T. L., Diwald O., Yates J. T. Jr, Molecular oxygen-mediated vacancy diffusion on TiO2(110)-new studies of the proposed mechanism. Chem. Phys. Lett. 393, 28–30 (2004).
Lira E., et al. , The importance of bulk T PubMed
Henderson M. A., Epling W. S., Perkins C. L., Peden C. H. F., Diebold U., Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: Molecular and dissociative channels. J. Phys. Chem. B 103, 5328–5337 (1999).
Berger T., Sterrer M., Diwald O., Knözinger E., Charge trapping and photoadsorption of O2 on dehydroxylated TiO2 nanocrystals-an electron paramagnetic resonance study. ChemPhysChem 6, 2104–2112 (2005). PubMed
Lee J., Zhang Z., Yates J. T. Jr, Electron-stimulated positive-ion desorption caused by charge transfer from adsorbate to substrate: Oxygen adsorbed on TiO2(110). Phys. Rev. B 79, 081408 (2009).
Thompson T. L., Yates J. T., Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. J. Phys. Chem. B 109, 18230–18236 (2005). PubMed
Thompson T. L., Yates J. T., Control of a surface photochemical process by fractal electron transport across the surface: O2 photodesorption from TiO2(110). J. Phys. Chem. B 110, 7431–7435 (2006). PubMed
Sporleder D., Wilson D. P., White M. G., Final state distributions of O2 photodesorbed from TiO2(110). J. Phys. Chem. C 113, 13180–13191 (2009). PubMed
Zhang Z., Yates J. T. Jr, Direct observation of surface-mediated electron-hole pair recombination in TiO2(110). J. Phys. Chem. C 114, 3098–3101 (2010).
Petrik N. G., Kimmel G. A., Photoinduced dissociation of O2 on rutile TiO2(110). J. Phys. Chem. Lett. 1, 1758–1762 (2010).
Petrik N. G., Kimmel G. A., Electron- and hole-mediated reactions in UV-irradiated O2 adsorbed on reduced rutile TiO2(110). J. Phys. Chem. C 115, 152–164 (2011).
Petrik N. G., Kimmel G. A., Oxygen photochemistry on TiO2(110): Recyclable, photoactive oxygen produced by annealing adsorbed O2. J. Phys. Chem. Lett. 2, 2790–2796 (2011).
Petrik N. G., Kimmel G. A., Probing the photochemistry of chemisorbed oxygen on TiO2(110) with Kr and other co-adsorbates. Phys. Chem. Chem. Phys. 16, 2338–2346 (2014). PubMed
Scheiber P., Riss A., Schmid M., Varga P., Diebold U., Observation and destruction of an elusive adsorbate with STM: O2/TiO2(110). Phys. Rev. Lett. 105, 216101 (2010). PubMed
Tan S., et al. , Molecular oxygen adsorption behaviors on the rutile TiO2(110)-1 PubMed
Wang Z.-T., Du Y., Dohnálek Z., Lyubinetsky I., Direct observation of site-specific molecular chemisorption of O2 on TiO2(110). J. Phys. Chem. Lett. 1, 3524–3529 (2010).
Wang Z.-T., Aaron Deskins N., Lyubinetsky I., Direct imaging of site-specific photocatalytical reactions of O2 on TiO2(110). J. Phys. Chem. Lett. 3, 102–106 (2011). PubMed
Henderson M. A., Shen M., Wang Z.-T., Lyubinetsky I., Characterization of the active surface species responsible for UV-induced desorption of O2 from the rutile TiO2(110) surface. J. Phys. Chem. C 117, 5774–5784 (2013).
Wu X., Selloni A., Lazzeri M., Nayak S. K., Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface. Phys. Rev. B 68, 241402 (2003).
Rasmussen M. D., Molina L. M., Hammer B., Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): A density functional theory study. J. Chem. Phys. 120, 988–997 (2004). PubMed
Chrétien S., Metiu H., O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with A PubMed
Ji Y., Wang B., Luo Y., First principles study of O2 adsorption on reduced rutile TiO2(110) surface under UV illumination and its role on CO oxidation. J. Phys. Chem. C 117, 956–961 (2013).
Xu H., Tong S. Y., Interaction of O2 with reduced rutile TiO2(110) surface. Surf. Sci. 610, 33–41 (2013).
Tian H., Xu B., Fan J., Xu H., Intrinsic role of excess electrons in surface reactions on rutile TiO2(110): Using water and oxygen as probes. J. Phys. Chem. C 122, 8270–8276 (2018).
Tilocca A., Selloni A., O2 and vacancy diffusion on rutile (110): Pathways and electronic properties. ChemPhysChem 6, 1911–1916 (2005). PubMed
Molina L. M., Rasmussen M. D., Hammer B., Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). J. Chem. Phys. 120, 7673–7680 (2004). PubMed
Chrétien S., Metiu H., Enhanced adsorption energy of A PubMed
Aaron Deskins N., Rousseau R., Dupuis M., Defining the role of excess electrons in the surface chemistry of TiO2. J. Phys. Chem. C 114, 5891–5897 (2010).
Henrich V. E., Anthony Cox P., The Surface Science of Metal Oxides (Cambridge University Press, 1996).
Dohnálek Z., Kim J., Bondarchuk O., White J. M., Kay B. D., Physisorption of PubMed
Zhang Z., et al. , Unraveling the diffusion of bulk Ti interstitials in rutile TiO2(110) by monitoring their reaction with O adatoms. J. Phys. Chem. C 114, 3059–3062 (2010).
Diebold U., Anderson J. F., Ng K.-O., Vanderbilt D., Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys. Rev. Lett. 77, 1322–1325 (1996). PubMed
Hapala P., et al. , Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).
Ellner M., et al. , The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16, 1974–1980 (2016). PubMed
Setvín M., et al. , Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014). PubMed
Reticcioli M., et al. , Polaron-driven surface reconstructions. Phys. Rev. X 7, 031053 (2017).
Reticcioli M., Setvín M., Schmid M., Diebold U., Franchini C., Formation and dynamics of small polarons on the rutile TiO2(110) surface. Phys. Rev. B 98, 045306 (2018).
Reticcioli M., Diebold U., Kresse G., Franchini C., “Small polarons in transition metal oxides” in Handbook of Materials Modeling, Andreoni W., Yip S., Eds. (Springer, Cham, Switzerland, 2019), pp. 1035–1073.
Reticcioli M., et al. , Interplay between adsorbates and polarons: CO on rutile PubMed
Bader R. F. W., Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).
Akbay T., et al. , The interaction of molecular oxygen on LaO terminated surfaces of LaNiO4. J. Mater. Chem. 4, 13113–13124 (2016).
Preda G., Pacchioni G., Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study. Catal. Today 177, 31–38 (2011).
Chen Z., Li J., Zeng X. C., Unraveling oxygen evolution in Li-rich oxides: A unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc. 141, 10751–10759 (2019). PubMed
Kramer C. J., Tolman W. B., Theopold K. H., Rheingold A. L., Variable character of O-O and M-O bonding in side-on ( PubMed PMC
Krejčí O., Hapala P., Ondráček M., Jelínek P., Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017).
de la Torre B., et al. , Submolecular resolution by variation of the inelastic electron tunneling spectroscopy amplitude and its relation to the AFM/STM signal. Phys. Rev. Lett. 119, 166001 (2017). PubMed
Barth C., Foster A. S., Henry C. R., Shluger A. L., Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477–501 (2011). PubMed
Setvín M., Hulva J., Parkinson G. S., Schmid M., Diebold U., Electron transfer between anatase PubMed PMC
Lundqvist M. J., Nilsing M., Persson P., Lunell S., DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int. J. Quant. Chem. 106, 3214–3234 (2006). PubMed
Yurtsever A., et al. , Understanding image contrast formation in TiO2with force spectroscopy. Phys. Rev. B 85, 125416 (2012).
Stetsovych O., et al. , Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy. Nat. Commun. 6, 7265 (2015). PubMed PMC
Giessibl F. J., Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997).
Pillay D., Wang Y., Hwang G. S., Prediction of tetraoxygen formation on rutile TiO2(110). J. Am. Chem. Soc. 128, 14000–14001 (2006). PubMed
Kimmel G. A., Petrik N. G., Tetraoxygen on reduced TiO2(110): Oxygen adsorption and reactions with bridging oxygen vacancies. Phys. Rev. Lett. 100, 196102 (2008). PubMed
Zhang Z., Yates J. T. Jr, Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012). PubMed
Bowker M., Bennett R. A., The role of T PubMed
Li M., et al. , The influence of the bulk reduction state on the surface structure and morphology of rutile
Yang C., Wöll C., IR spectroscopy applied to metal oxide surfaces: Adsorbate vibrations and beyond. Adv. Phys. X 2, 373–408 (2017).
Abragam A., Bleaney B., Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, UK, 2012).
Henderson M. A., A surface science perspective on
Wagner M., et al. , Reducing the
Wagner M., et al. , Resolving the structure of a well-ordered hydroxyl overlayer on I PubMed PMC
Wagner M., et al. , Prototypical organic-oxide interface: Intramolecular resolution of sexiphenyl on I PubMed PMC
Mönig H., et al. , Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018). PubMed
Alexander L., Giessibl F. J., In-situ characterization of O-terminated Cu tips for high-resolution atomic force microscopy. Appl. Phys. Lett. 114, 143103 (2019).
Campbell C. T., Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1–111 (1997).
Giessibl F. J., The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019). PubMed
Huber F., Giessibl F. J., Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017). PubMed
Setvín M., et al. , Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy 113, 152–157 (2012).
Kresse G., Furthmüller J., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 54, 11169 (1996).
Kresse G., Furthmüller J, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). PubMed
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009). PubMed
Dion M., Rydberg H., Schröder E., Langreth D. C., Lundqvist B. I., Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). PubMed
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
Sader J. E., Jarvis S. P., Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).