Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26118408
PubMed Central
PMC4491188
DOI
10.1038/ncomms8265
PII: ncomms8265
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials.
] National Institute for Materials Science Wolfgang Gaede Str 1 Karlsruhe 76131 Germany
Charles University Faculty of Mathematics and Physics 5 Holešovičkách 2 Praha 8 Czech Republic
International Center for Young Scientists NIMS 1 2 1 Sengen Tsukuba 305 0047 Japan
National Institute for Materials Science 1 2 1 Sengen Tsukuba 305 0047 Japan
See more in PubMed
Fujishima A. & Kenichi H. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). PubMed
Fujishima A., Raro T. N. & Tryk D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000).
O'Regan B. & Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
Shi E. et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2, 884 (2012). PubMed PMC
Fujishima A., Zhang X. & Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).
Henderson M. A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011).
Liu L., Zhao H., Andino J. M. & Li Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817–1828 (2012).
Crossland E. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013). PubMed
Murdoch M. et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489–492 (2011). PubMed
Yang H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008). PubMed
Zhang L., Miller B. K. & Crozier P. A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679–684 (2013). PubMed
Binnig G., Rohrer H., Gerber C. H. & Weibel E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).
Hebenstreit W., Ruzycki N., Herman G., Gao Y. & Diebold U. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B 62, R16334–R16336 (2000).
Gong X.-Q., Selloni A., Batzill M. & Diebold U. Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006). PubMed
He Y., Dulub O., Cheng H., Selloni A. & Diebold U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009). PubMed
Scheiber P. et al. Sub)Surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 109, 136103 (2012). PubMed
He Y., Tilocca A., Dulub O., Selloni A. & Diebold U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat. Mater. 8, 585–589 (2009). PubMed
Grinter D. C., Nicotra M. & Thornton G. Acetic acid adsorption on anatase TiO2 (101). J. Phys. Chem. C 116, 11643–11651 (2012).
Setvín M. et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341, 988–991 (2013). PubMed
Setvín M. et al. Charge trapping at the step edges of TiO2 anatase (101). Angew. Chem. Int. Ed. 53, 4714–4716 (2014). PubMed
Binnig G., Quate C. F. & Gerber C. H. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). PubMed
Lauritsen J. V. et al. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17, 3436–3441 (2006). PubMed
Enevoldsen G., Foster A., Christensen M., Lauritsen J. & Besenbacher F. Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO2(110): Experiments and atomistic simulations. Phys. Rev. B 76, 205415 (2007).
Enevoldsen G. H., Glatzel T., Christensen M. C., Lauritsen J. & Besenbacher F. Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. Phys. Rev. Lett. 100, 236104 (2008). PubMed
Enevoldsen G. et al. Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface. Phys. Rev. B 78, 045416 (2008).
Bechstein R. et al. ‘All-inclusive' imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20, 505703 (2009). PubMed
Enevoldsen G. H. et al. Imaging of the hydrogen subsurface site in rutile TiO2. Phys. Rev. Lett. 102, 136103 (2009). PubMed
Yurtsever A., Sugimoto Y., Abe M. & Morita S. NC-AFM imaging of the TiO2(110)-(1 × 1) surface at low temperature. Nanotechnology 21, 165702 (2010). PubMed
Yurtsever A. et al. Alkali-metal adsorption and manipulation on a hydroxylated TiO2(110) surface using atomic force microscopy. Phys. Rev. B 84, 085413 (2011).
Bikondoa O. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006).
Sader J. E. & Sugimoto Y. Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy. Appl. Phys. Lett. 97, 043502 (2010).
Diebold U., Anderson J. F., Ng K.-O. & Vanderbilt D. Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys. Rev. Lett. 77, 1322–1325 (1996). PubMed
Setvín M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014). PubMed
Kley C. S. et al. Atomic-scale observation of multiconformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase. Nano Lett. 14, 563–569 (2014). PubMed
Zhang Z., Yates J. & John T. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012). PubMed
Oyabu N. et al. Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys. Rev. Lett. 96, 106101 (2006). PubMed
Sugimoto Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007). PubMed
Sugimoto Y. et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008). PubMed
Yurtsever A. et al. Understanding image contrast formation in TiO2 with force spectroscopy. Phys. Rev. B 85, 125416 (2012).
Baykara M. Z. et al. Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys. Rev. B 87, 155414 (2013).
Mönig H. et al. Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: A case study. ACS Nano 7, 10233–10244 (2013). PubMed
Setvín M. et al. Identification of adsorbed molecules via STM tip manipulation: CO, H2O, and O2 on TiO2 anatase (101). Phys. Chem. Chem. Phys. 16, 21524–21530 (2014). PubMed
Cheng H. & Selloni A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 79, 092101 (2009).
Aschauer U. & Selloni A. Hydrogen interaction with the anatase TiO2(101) surface. Phys. Chem. Chem. Phys. 14, 16595–16602 (2012). PubMed
Finazzi E., Di Valentin C., Selloni A. & Pacchioni G. First principles study of nitrogen doping at the anatase TiO2(101) surface. J. Phys. Chem. C 111, 9275–9282 (2007).
Albrecht T. R., Grütter P., Horne D. & Rugar D. Frequency modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).
Lantz M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001). PubMed
Abe M., Sugimoto Y., Custance O. & Morita S. Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl. Phys. Lett. 87, 173503 (2005).
Sader J. E. & Jarvis S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).
Sugimoto Y. et al. Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of the α-Sn/Si(111)-[Image: see text] R30o surface. Phys. Rev. B 73, 205329 (2006).
Setvín M. et al. Surface preparation of TiO2 anatase (101): pitfalls and how to avoid them. Surf. Sci. 626, 61–67 (2014).
Kresse G. & Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 69993–11186 (1996). PubMed
Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Tersoff J. & Hamann D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).