Structure of an Ultrathin Oxide on Pt3Sn(111) Solved by Machine Learning Enhanced Global Optimization
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
38505419
PubMed Central
PMC10946564
DOI
10.1002/ange.202204244
PII: ANGE202204244
Knihovny.cz E-resources
- Keywords
- Density Functional Calculations, Machine Learning, Structure Elucidation, Surface Chemistry,
- Publication type
- Journal Article MeSH
Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse population generation, can be used to solve an unknown surface structure-the (4×4) surface oxide on Pt3Sn(111)-based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface studies, where it can replace manual, intuition based model generation.
Machine learning techniques can be implemented to accelerate surface structure determination based on density functional theory. The application of such an algorithm is demonstrated here for a surface oxide on Pt3Sn(111) which had eluded determination by experimental methods.
Div of Synchrotron Radiation Research Lund University 22100 Lund Sweden
Institute of Applied Physics TU Wien 1040 Vienna Austria
Materials Science and Applied Mathematics Malmö University 20506 Malmö Sweden
See more in PubMed
Burch R., J. Catal. 1981, 71, 348–359.
Cortright R. D., Hill J. M., Dumesic J. A., Catal. Today 2000, 55, 213–223.
Coloma F., Sepúlveda-Escribano A., Fierro J., Rodríguez-Reinoso F., Appl. Catal. A 1996, 136, 231–248.
Moscu A., Veyre L., Thieuleux C., Meunier F., Schuurman Y., Catal. Today 2015, 258, 241–246.
Arenz M., Stamenkovic V., Blizanac B., Mayrhofer K., Markovic N., Ross P., J. Catal. 2005, 232, 402–410. PubMed
Lamy C., Rousseau S., Belgsir E., Coutanceau C., Léger J.-M., Electrochim. Acta 2004, 49, 3901–3908.
Batzill M., Beck D. E., Koel B. E., Appl. Phys. Lett. 2001, 78, 2766–2768.
Batzill M., Beck D. E., Koel B. E., Phys. Rev. B 2001, 64, 245402.
Batzill M., Kim J., Beck D. E., Koel B. E., Phys. Rev. B 2004, 69, 165403.
Atrei A., Bardi U., Rovida G., Torrini M., Hoheisel M., Speller S., Surf. Sci. 2003, 526, 193–200.
Hoheisel M., Speller S., Heiland W., Atrei A., Bardi U., Rovida G., Phys. Rev. B 2002, 66, 165416.
Zheng J., Busch M., Artiglia L., Skála T., Rossmeisl J., Agnoli S., Adv. Mater. Interfaces 2019, 6, 1801874.
Oganov A., Pickard C., Zhu Q., Needs R., Nat. Rev. Mater. 2019, 4, 331–348.
Kirkpatrick S., Gelatt C. D., Vecchi M. P., Science 1983, 220, 671. PubMed
Pickard C. J., Needs R. J., J. Phys. Condens. Matter 2011, 23, 053201. PubMed
Wales D. J., Doye J. P. K., J. Phys. Chem. A 1997, 101, 5111–5116.
Amsler M., Goedecker S., J. Chem. Phys. 2010, 133, 224104. PubMed
Laio A., Parrinello M., Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. PubMed PMC
Earl D. J., Deem M. W., Phys. Chem. Chem. Phys. 2005, 7, 3910–3916. PubMed
Wang Y., Lv J., Zhu L., Ma Y., Phys. Rev. B 2010, 82, 094116.
Oganov A. R., Glass C. W., J. Chem. Phys. 2006, 124, 244704. PubMed
Abraham N. L., Probert M. I. J., Phys. Rev. B 2006, 73, 224104.
Vilhelmsen L. B., Hammer B., J. Chem. Phys. 2014, 141, 044711. PubMed
Woodley S., Day G., Catlow R., Philos. Trans. R. Soc. London Ser. A 2020, 378, 20190600. PubMed
Sierka M., Todorova T. K., Sauer J., Kaya S., Stacchiola D., Weissenrieder J., Shaikhutdinov S., Freund H.-J., J. Chem. Phys. 2007, 126, 234710. PubMed
Merte L. R., Jørgensen M. S., Pussi K., Gustafson J., Shipilin M., Schaefer A., Zhang C., Rawle J., Nicklin C., Thornton G., Lindsay R., Hammer B., Lundgren E., Phys. Rev. Lett. 2017, 119, 096102. PubMed
Zakaryan H., Kvashnin A., Oganov A., Sci. Rep. 2017, 7, 10357. PubMed PMC
Kolsbjerg E. L., Peterson A. A., Hammer B., Phys. Rev. B 2018, 97, 195424.
Deringer V., Proserpio D., Csanyi G., Pickard C., Faraday Discuss. 2018, 211, 45–59. PubMed
Tong Q., Xue L., Lv J., Wang Y., Ma Y., Faraday Discuss. 2018, 211, 31–43. PubMed
Bisbo M. K., Hammer B., Phys. Rev. Lett. 2020, 124, 086102. PubMed
D. Arthur, S. Vassilvitskii in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, USA, of SODA'07, pp. 1027–1035.
Jørgensen M. S., Groves M. N., Hammer B., J. Chem. Theory Comput. 2017, 13, 1486–1493. PubMed
Y. Wang, C. Dang, H. Li, L. Han, J. Wei in 2009 IEEE Congress on Evolutionary Computation, pp. 2927–2933.
Yuan Y., Xu H., Wang B., Yao X., IEEE Trans. Evol. Comput. 2016, 20, 16–37.
Zhang X., Tian Y., Cheng R., Jin Y., IEEE Trans. Evol. Comput. 2018, 22, 97–112.
Cheng B., Griffiths R.-R., Wengert S., Kunkel C., Stenczel T., Zhu B., Deringer V. L., Bernstein N., Margraf J. T., Reuter K., Csanyi G., Acc. Chem. Res. 2020, 53, 1981–1991. PubMed
Stamenković V. R., Arenz M., Lucas C. A., Gallagher M. E., Ross P. N., Marković N. M., J. Am. Chem. Soc. 2003, 125, 2736–2745. PubMed
Sokolović I., Reticcioli M., Čalkovský M., Wagner M., Schmid M., Franchini C., Diebold U., Setvín M., Proc. Natl. Acad. Sci. USA 2020, 117, 14827–14837. PubMed PMC
Seko A., Togo A., Oba F., Tanaka I., Phys. Rev. Lett. 2008, 100, 045702. PubMed
Suzuki K., Hanaya T., Sato R., Minato T., Yamaguchi K., Mizuno N., Chem. Commun. 2016, 52, 10688–10691. PubMed
Batzill M., Chaka A. M., Diebold U., Europhys. Lett. 2004, 65, 61–67.
Atrei A., Bardi U., Rovida G., Torrini M., Zanazzi E., Ross P. N., Phys. Rev. B 1992, 46, 1649–1654. PubMed
Bortoluzzi M., Ceriotti A., Ciabatti I., Della Pergola R., Femoni C., Carmela Iapalucci M., Storione A., Zacchini S., Dalton Trans. 2016, 45, 5001–5013. PubMed
Jennings M. C., Schoettel G., Roy S., Puddephatt R. J., Organometallics 1991, 10, 580–586.
Deringer V. L., Bernstein N., Csányi G., Ben Mahmoud C., Ceriotti M., Wilson M., Drabold D. A., Elliott S. R., Nature 2021, 589, 59–64. PubMed
Smith J. S., Nebgen B. T., Zubatyuk R., Lubbers N., Devereux C., Barros K., Tretiak S., Isayev O., Roitberg A. E., Nat. Commun. 2019, 10, 2903. PubMed PMC
Van der Oord C., Dusson G., Csányi G., Ortner C., Mach. Learn.: Sci. Technol. 2020, 1, 015004.
Mortensen H. L., Meldgaard S. A., Bisbo M. K., Christiansen M.-P. V., Hammer B., Phys. Rev. B 2020, 102, 075427.