Machine Learning
Dotaz
Zobrazit nápovědu
Digitalizace postupně proniká do velké části medicínských oblastí včetně patologie. Společně s digitálním zpracováním dat přichází aplikace metod umělé inteligence za účelem zjednodušení rutinních procesů, zvýšení bezpečnosti apod. Ačkoliv se obecné povědomí o metodách umělé inteligence zvyšuje, stále není pravidlem, že by odborníci z netechnických oborů měli detailní představu o tom, jak takové systémy fungují a jak se učí. Cílem tohoto textu je přístupnou formou vysvětlit základy strojového učení s využitím příkladů a ilustrací z oblasti digitální patologie. Nejedná se samozřejmě o ucelený přehled ani o představení nejmodernějších metod. Držíme se spíše úplných základů a představujeme fundamentální myšlenky, které stojí za většinou učících systémů, s použitím nejjednodušších modelů. V textu se věnujeme zejména rozhodovacím stromům, jejichž funkce je snadno vysvětlitelná, a elementárním neuronovým sítím, které jsou hlavním modelem používaným v dnešní umělé inteligenci. Pokusíme se také popsat postup spolupráce mezi lékaři, kteří dodávají data, a informatiky, kteří s jejich pomocí vytvářejí učící systémy. Věříme, že tento text pomůže překlenout rozdíly mezi znalostmi lékařů a informatiků a tím přispěje k efektivnější mezioborové spolupráci.
Digitalization has gradually made its way into many areas of medicine, including pathology. Along with digital data processing comes the application of artificial intelligence methods to simplify routine processes, enhance safety, etc. Although general awareness of artificial intelligence methods is increasing, it is still not common for professionals from non-technical fields to have a detailed understanding of how such systems work and learn. This text aims to explain the basics of machine learning in an accessible way using examples and illustrations from digital pathology. This is not intended to be a comprehensive overview or an introduction to cutting-edge methods. Instead, we use the simplest models to focus on fundamental concepts behind most learning systems. The text concentrates on decision trees, whose functionality is easy to explain, and basic neural networks, the primary models used in today’s artificial intelligence. We also attempt to describe the collaborative process between medical specialists, who provide the data, and computer scientists, who use this data to develop learning systems. This text will help bridge the knowledge gap between medical professionals and computer scientists, contributing to more effective interdisciplinary collaboration.
- MeSH
- lidé MeSH
- patologie * trendy MeSH
- strojové učení * trendy MeSH
- umělá inteligence trendy MeSH
- Check Tag
- lidé MeSH
Digitalizace laboratoří, aplikace big dat a automatizovaná strojová diagnostika ("machine learning") jsou nástroji pro vznik a fungování toho, co se označuje jako precizní medicína. Genomika, její dominantní metody (qPCR, dPCR, ddPCR, NGS), produkující obrovská kvanta dat (big data) a schopnosti počítačových systémů tyto soubory dat využívat v diagnostice a terapii za významného přispění "umělé inteligence" se označují jako strojová automatizovaná diagnostika - machine learning respektive deep learning). Tyto postupy pronikají z průmyslu a výzkumu do rutinní medicíny včetně medicíny laboratorní. Zvládnutí technických a personálních problémů těchto změn bude stát značné úsilí, srovnatelné s před lety realizovanou přeměnou manuální laboratorní práce na automatizovanou činnost a s přeměnou papírové dokumentace výsledků na laboratorní a nemocniční informační systémy. Lze předpokládat nejen zásadní změny metod laboratorní práce, ale i změny požadavků na odbornost personálu laboratoří a rovněž lze předpokládat nevyhnutelnost radikálního ovlivnění činnosti klinických laboratoří. Etický rozměr nastávajících změn bude stejně závažný, jako ten technický a bude možné očekávat nejen významný progres v diagnostice e prognostice chorob, ale i vzestup rizika zdravotní péče v případě chyb a neprofesionality. Automatická strojová aplikace big dat a používání umělé inteligence jsou náročné, je s nimi v medicíně málo zkušeností, ale vyhnout se jim nebude možné.
Digitalization of clinical laboratories, application of big data and methods of machine learning re contemporary tools for precision medicine. Precision medicine is based mainly on the genomic methods, namely of dominant PCR and NGS methods. These methods produces enormous number of dates (big data) and can be explored by means of artificial intelligence in processes called machine learning. Machine learning was primarily used in industry and research and now contemporary penetrates into medicine and also to laboratory medicine. Methods based on the big data and artificial intelligence with exploration of big data is certainly very important factor of future of medicine. It will be needs large requirements not only on high-technology equipment, but also for new type of young laboratory Professional used basically new methods of work and mind. Machine learning, part of precision medicine, necessary namely for oncology and prediction of patients state crettemeans also lot of new types of ethical problems. These ethical questions and problems should be soluted immediately, parallel with introduction of machine learning to laboratory practice.
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
S postupující digitalizací patologie se do popředí zájmu dostávají i aplikace metod strojového učení a umělé inteligence. Výzkum a vývoj v této oblasti je velmi rychlý, ale aplikace učících systémů v klinické praxi stále zaostávají. Cílem tohoto textu je přiblížit proces tvorby a nasazení učících systémů v digitální patologii. Začneme popisem základních vlastností dat produkovaných v rámci digitální patologie. Konkrétně pojednáme o skenerech a skenování vzorků, o ukládání a přenosu dat, o kontrole jejich kvality a přípravě pro zpracování pomocí učících systémů, zejména o anotacích. Naším cílem je prezentovat aktuální přístupy k řešení technických problémů a zároveň upozornit na úskalí, na která lze narazit při zpracování dat z digitální patologie. V první části také naznačíme, jak vypadají aktuální softwarová řešení pro prohlížení naskenovaných vzorků a implementace diagnostických postupů zahrnujících učící systémy. Ve druhé části textu popíšeme obvyklé úlohy digitální patologie a naznačíme obvyklé přístupy k jejich řešení. V této části zejména vysvětlíme, jak je nutné modifikovat standardní metody strojového učení pro zpracování velkých skenů a pojednáme o konkrétních aplikacích v diagnostice. Na závěr textu poskytneme rychlý náhled dalšího možného vývoje učících systémů v digitální patologii. Zejména ilustrujeme podstatu přechodu na velké základní modely a naznačíme problematiku virtuálního barvení vzorků. Doufáme, že tento text přispěje k lepší orientaci v rapidně se vyvíjející oblasti strojového učení v digitální patologii a tím přispěje k rychlejší adopci učících metod v této oblasti.
With the advancing digitalization of pathology, the application of machine learning and artificial intelligence methods is becoming increasingly important. Research and development in this field are progressing rapidly, but the clinical implementation of learning systems still lags behind. The aim of this text is to provide an overview of the process of developing and deploying learning systems in digital pathology. We begin by describing the fundamental characteristics of data produced in digital pathology. Specifically, we discuss scanners and sample scanning, data storage and transmission, quality control, and preparation for processing by learning systems, with a particular focus on annotations. Our goal is to present current approaches to addressing technical challenges while also highlighting potential pitfalls in processing digital pathology data. In the first part of the text, we also outline existing software solutions for viewing scanned samples and implementing diagnostic procedures that incorporate learning systems. In the second part of the text, we describe common tasks in digital pathology and outline typical approaches to solving them. Here, we explain the necessary modifications to standard machine learning methods for processing large scans and discuss specific diagnostic applications. Finally, we provide a brief overview of the potential future development of learning systems in digital pathology. We illustrate the transition to large foundational models and introduce the topic of virtual staining of samples. We hope that this text will contribute to a better understanding of the rapidly evolving field of machine learning in digital pathology and, in turn, facilitate the faster adoption of learning-based methods in this domain.
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- MeSH
- avatar MeSH
- lidé MeSH
- netholismus * MeSH
- řízené strojové učení MeSH
- strojové učení * MeSH
- uživatelské rozhraní počítače MeSH
- videohry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
- MeSH
- dospělí MeSH
- elektrokardiografie * metody MeSH
- genotyp MeSH
- lidé MeSH
- strojové učení * MeSH
- support vector machine MeSH
- syndrom dlouhého QT * genetika diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The search for non-invasive, fast, and low-cost diagnostic tools has gained significant traction among many researchers worldwide. Dielectric properties calculated from microwave signals offer unique insights into biological tissue. Material properties, such as relative permittivity (εr) and conductivity (σ), can vary significantly between healthy and unhealthy tissue types at a given frequency. Understanding this difference in properties is key for identifying the disease state. The frequency-dependent nature of the dielectric measurements results in large datasets, which can be postprocessed using artificial intelligence (AI) methods. In this work, the dielectric properties of liver tissues in three mouse models of liver disease are characterized using dielectric spectroscopy. The measurements are grouped into four categories based on the diets or disease state of the mice, i.e., healthy mice, mice with non-alcoholic steatohepatitis (NASH) induced by choline-deficient high-fat diet, mice with NASH induced by western diet, and mice with liver fibrosis. Multi-class classification machine learning (ML) models are then explored to differentiate the liver tissue groups based on dielectric measurements. The results show that the support vector machine (SVM) model was able to differentiate the tissue groups with an accuracy up to 90%. This technology pipeline, thus, shows great potential for developing the next generation non-invasive diagnostic tools.
- MeSH
- jaterní cirhóza MeSH
- játra patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * diagnóza patologie MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- esenciální tremor * MeSH
- hlas * MeSH
- lidé MeSH
- poruchy hlasu * MeSH
- reprodukovatelnost výsledků MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
- práce podpořená grantem MeSH