-
Something wrong with this record ?
Machine Learning(s) in gaming disorder through the user-avatar bond: A step towards conceptual and methodological clarity
V. Stavropoulos, M. Prokofieva, D. Zarate, M. Colder Carras, R. Ratan, R. Kowert, B. Schivinski, TL. Burleigh, D. Poulus, L. Karimi, A. Gorman-Alesi, T. Brown, R. Gomez, K. Hein, N. Arachchilage, MD. Griffiths
Language English Country Hungary
Document type Journal Article
NLK
Directory of Open Access Journals
from 2012
Free Medical Journals
from 2012
PubMed Central
from 2013
Open Access Digital Library
from 2013-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2012
- MeSH
- Avatar MeSH
- Humans MeSH
- Internet Addiction Disorder * MeSH
- Supervised Machine Learning MeSH
- Machine Learning * MeSH
- User-Computer Interface MeSH
- Video Games MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
Bloomberg School of Public Health John Hopkins University Baltimore USA
Catholic Care Victoria Australia
Department of Communication University of Münster Münster Germany
International Gaming Research Unit Psychology Dept Nottingham Trent University UK
Manna Institute Southern Cross University Gold Coast Australia
Psychology Research Institute Faculty of Social Studies Masaryk University Brno Czech Republic
School of Computing RMIT University Australia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25002960
- 003
- CZ-PrNML
- 005
- 20250206103957.0
- 007
- ta
- 008
- 250121s2024 hu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1556/2006.2024.00063 $2 doi
- 035 __
- $a (PubMed)39576295
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a hu
- 100 1_
- $a Stavropoulos, Vasileios $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/0000000169644662
- 245 10
- $a Machine Learning(s) in gaming disorder through the user-avatar bond: A step towards conceptual and methodological clarity / $c V. Stavropoulos, M. Prokofieva, D. Zarate, M. Colder Carras, R. Ratan, R. Kowert, B. Schivinski, TL. Burleigh, D. Poulus, L. Karimi, A. Gorman-Alesi, T. Brown, R. Gomez, K. Hein, N. Arachchilage, MD. Griffiths
- 520 9_
- $a In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a netholismus $7 D000082424
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a uživatelské rozhraní počítače $7 D014584
- 650 _2
- $a řízené strojové učení $7 D000069553
- 650 _2
- $a videohry $7 D018910
- 650 _2
- $a avatar $7 D000095902
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Prokofieva, Maria $u 2Victoria University, Australia $1 https://orcid.org/0000000319743827
- 700 1_
- $a Zarate, Daniel $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/0000000215088637
- 700 1_
- $a Colder Carras, Michelle $u 3Bloomberg School of Public Health, John Hopkins University, Baltimore, USA $1 https://orcid.org/000000030750524X
- 700 1_
- $a Ratan, Rabindra $u 4Michigan State University, USA $1 https://orcid.org/0000000176118046
- 700 1_
- $a Kowert, Rachel $u 5Psychology Research Institute, Faculty of Social Studies, Masaryk University, Brno, Czech Republic $u 6Department of Communication, University of Münster, Münster, Germany $1 https://orcid.org/0000000295229945
- 700 1_
- $a Schivinski, Bruno $u 7School of Media and Communication, RMIT University, Australia $1 https://orcid.org/0000000240951922
- 700 1_
- $a Burleigh, Tyrone L $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/000000023405140X
- 700 1_
- $a Poulus, Dylan $u 8Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Gold Coast, Australia $u 9Manna Institute, Southern Cross University, Gold Coast, Australia $1 https://orcid.org/0000000345026821
- 700 1_
- $a Karimi, Leila $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/000000032364504X
- 700 1_
- $a Gorman-Alesi, Angela $u 10Catholic Care Victoria, Australia
- 700 1_
- $a Brown, Taylor $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/0000000198143832
- 700 1_
- $a Gomez, Rapson $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/0000000176371551
- 700 1_
- $a Hein, Kaiden $u 1Department of Psychology, Applied Health, School of Health and Biomedical Sciences, RMIT University, Australia $1 https://orcid.org/0000000217589208
- 700 1_
- $a Arachchilage, Nalin $u 11School of Computing, RMIT University, Australia $1 https://orcid.org/0000000200590376
- 700 1_
- $a Griffiths, Mark D $u 12International Gaming Research Unit, Psychology Dept, Nottingham Trent University, UK $1 https://orcid.org/0000000188806524 $7 mub2010582865
- 773 0_
- $w MED00191583 $t Journal of behavioral addictions $x 2063-5303 $g Roč. 13, č. 4 (2024), s. 894-900
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39576295 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206103953 $b ABA008
- 999 __
- $a ok $b bmc $g 2263014 $s 1238967
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 13 $c 4 $d 894-900 $e 20241122 $i 2063-5303 $m Journal of behavioral addictions $n J Behav Addict $x MED00191583
- LZP __
- $a Pubmed-20250121