Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Detecting Severe Incidents from Electronic Medical Records Using Machine Learning Methods

Kazuya Okamoto*, Takashi Yamamoto, Luciano H.O. Santos, Shusuke Hiragi, Osamu Sugiyama, Goshiro Yamamoto, Masahiro Hirose, Tomohiro Kuroda

. 2020 ; 16 (1) : 12-14.

Jazyk angličtina Země Česko

Perzistentní odkaz   https://www.medvik.cz/link/bmc20009492

The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc20009492
003      
CZ-PrNML
005      
20221107214200.0
007      
cr|cn|
008      
200624s2020 xr a fs 000 0|eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2020.16.1.3 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Okamoto, Kazuya $u Division of Medical Information Technology and Administration Planning, Kyoto University Hospital, Japan
245    10
$a Detecting Severe Incidents from Electronic Medical Records Using Machine Learning Methods / $c Kazuya Okamoto*, Takashi Yamamoto, Luciano H.O. Santos, Shusuke Hiragi, Osamu Sugiyama, Goshiro Yamamoto, Masahiro Hirose, Tomohiro Kuroda
504    __
$a Literatura
520    9_
$a The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.
650    17
$a elektronické zdravotní záznamy $7 D057286 $2 czmesh
650    17
$a řízené strojové učení $7 D000069553 $2 czmesh
650    _7
$a strojové učení $7 D000069550 $2 czmesh
650    _7
$a automatizované zpracování dat $x metody $7 D001330 $2 czmesh
650    _7
$a řízení bezpečnosti $7 D017751 $2 czmesh
650    _7
$a support vector machine $7 D060388 $2 czmesh
650    _7
$a zdravotnické informační systémy $7 D063005 $2 czmesh
650    _7
$a statistika jako téma $7 D013223 $2 czmesh
700    1_
$a Yamamoto, Takashi $u Patient Safety Unit, Kyoto University Hospital, Japan
700    1_
$a Santos, Luciano H. O. $u Division of Medical Information Technology and Administration Planning, Kyoto University Hospital, Japan
700    1_
$a Hiragi, Shusuke $u Division of Medical Information Technology and Administration Planning, Kyoto University Hospital, Japan
700    1_
$a Sugiyama, Osamu $u Preemptive Medicine & Lifestyle-Related Disease Research Center, Kyoto University Hospital, Japan
700    1_
$a Yamamoto, Goshiro $u Division of Medical Information Technology and Administration Planning, Kyoto University Hospital, Japan
700    1_
$a Hirose, Masahiro $u Faculty of Medicine, Shimane University, Japan
700    1_
$a Kuroda, Tomohiro $u Division of Medical Information Technology and Administration Planning, Kyoto University Hospital, Japan
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 16, č. 1 (2020), s. 12-14 $w MED00173462
856    41
$u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20140801191602 $b ABA008
991    __
$a 20221107214157 $b ABA008
999    __
$a ok $b bmc $g 1537819 $s 1099576
BAS    __
$a 3 $a 4
BMC    __
$a 2020 $b 16 $c 1 $d 12-14 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK189 $d 20221107 $a NLK 2020-20/dk

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...