Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Electrocardiographic Discrimination of Long QT Syndrome Genotypes: A Comparative Analysis and Machine Learning Approach

M. Srutova, V. Kremen, L. Lhotska

. 2025 ; 25 (7) : . [pub] 20250402

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc25016184

Grantová podpora
101136607 European Union

Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25016184
003      
CZ-PrNML
005      
20250731091600.0
007      
ta
008      
250708s2025 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s25072253 $2 doi
035    __
$a (PubMed)40218765
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Srutova, Martina $u Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic $1 https://orcid.org/0009000148312391
245    10
$a Electrocardiographic Discrimination of Long QT Syndrome Genotypes: A Comparative Analysis and Machine Learning Approach / $c M. Srutova, V. Kremen, L. Lhotska
520    9_
$a Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
650    _2
$a lidé $7 D006801
650    12
$a syndrom dlouhého QT $x genetika $x diagnóza $x patofyziologie $7 D008133
650    12
$a elektrokardiografie $x metody $7 D004562
650    _2
$a genotyp $7 D005838
650    12
$a strojové učení $7 D000069550
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a support vector machine $7 D060388
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a dospělí $7 D000328
655    _2
$a časopisecké články $7 D016428
655    _2
$a srovnávací studie $7 D003160
700    1_
$a Kremen, Vaclav $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic $1 https://orcid.org/0000000198447617
700    1_
$a Lhotska, Lenka $u Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic $1 https://orcid.org/0000000307425645 $7 ntka173228
773    0_
$w MED00008309 $t Sensors $x 1424-8220 $g Roč. 25, č. 7 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40218765 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091554 $b ABA008
999    __
$a ok $b bmc $g 2366784 $s 1253309
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 25 $c 7 $e 20250402 $i 1424-8220 $m Sensors $n Sensors (Basel) $x MED00008309
GRA    __
$a 101136607 $p European Union
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...