-
Je něco špatně v tomto záznamu ?
Electrocardiographic Discrimination of Long QT Syndrome Genotypes: A Comparative Analysis and Machine Learning Approach
M. Srutova, V. Kremen, L. Lhotska
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
101136607
European Union
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
40218765
DOI
10.3390/s25072253
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektrokardiografie * metody MeSH
- genotyp MeSH
- lidé MeSH
- strojové učení * MeSH
- support vector machine MeSH
- syndrom dlouhého QT * genetika diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25016184
- 003
- CZ-PrNML
- 005
- 20250731091600.0
- 007
- ta
- 008
- 250708s2025 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s25072253 $2 doi
- 035 __
- $a (PubMed)40218765
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Srutova, Martina $u Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic $1 https://orcid.org/0009000148312391
- 245 10
- $a Electrocardiographic Discrimination of Long QT Syndrome Genotypes: A Comparative Analysis and Machine Learning Approach / $c M. Srutova, V. Kremen, L. Lhotska
- 520 9_
- $a Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a syndrom dlouhého QT $x genetika $x diagnóza $x patofyziologie $7 D008133
- 650 12
- $a elektrokardiografie $x metody $7 D004562
- 650 _2
- $a genotyp $7 D005838
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a dospělí $7 D000328
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a srovnávací studie $7 D003160
- 700 1_
- $a Kremen, Vaclav $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic $1 https://orcid.org/0000000198447617
- 700 1_
- $a Lhotska, Lenka $u Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague, Czech Republic $1 https://orcid.org/0000000307425645 $7 ntka173228
- 773 0_
- $w MED00008309 $t Sensors $x 1424-8220 $g Roč. 25, č. 7 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40218765 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091554 $b ABA008
- 999 __
- $a ok $b bmc $g 2366784 $s 1253309
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 25 $c 7 $e 20250402 $i 1424-8220 $m Sensors $n Sensors (Basel) $x MED00008309
- GRA __
- $a 101136607 $p European Union
- LZP __
- $a Pubmed-20250708