Tailoring topological order and π-conjugation to engineer quasi-metallic polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
y2018/nmt-4783
Comunidad de Madrid
Y2018/nmt-4783
Comunidad de Madrid
PubMed
32313219
DOI
10.1038/s41565-020-0668-7
PII: 10.1038/s41565-020-0668-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Topological band theory predicts that a topological electronic phase transition between two insulators must proceed via closure of the electronic gap. Here, we use this transition to circumvent the instability of metallic phases in π-conjugated one-dimensional (1D) polymers. By means of density functional theory, tight-binding and GW calculations, we predict polymers near the topological transition from a trivial to a non-trivial quantum phase. We then use on-surface synthesis with custom-designed precursors to make polymers consisting of 1D linearly bridged acene moieties, which feature narrow bandgaps and in-gap zero-energy edge states when in the topologically non-trivial phase close to the topological transition point. We also reveal the fundamental connection between topological classes and resonant forms of 1D π-conjugated polymers.
EMPA Swiss Federal Laboratories for Materials Science and Technology Dübendorf Switzerland
IMDEA Nanociencia Madrid Spain
Institute of Physics The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977). DOI
Farchioni, R. & Grosso, G. Organic electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids (Springer, 2001).
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001). DOI
Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988). DOI
Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011). DOI
Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997). DOI
Roncali, J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28, 1761–1775 (2007). DOI
Chujo, Y. Conjugated Polymer Synthesis: Methods and Reactions (Wiley-VCH, 2010).
Steckler, T. T. et al. Very low band gap thiadiazoloquinoxaline donor–acceptor polymers as multi-tool conjugated polymers. J. Am. Chem. Soc. 136, 1190–1193 (2014). DOI
Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015). DOI
Kawabata, K., Saito, M., Osaka, I. & Takimiya, K. Very small bandgap π-conjugated polymers with extended thienoquinoids. J. Am. Chem. Soc. 138, 7725–7732 (2016). DOI
Scherf, U. & Müllen, K. Design and synthesis of extended pi-systems: monomers, oligomers, polymers. Synthesis 1–2, 23–38 (1992). DOI
Garay, R. O., Naarmann, H. & Muellen, K. Synthesis and characterization of poly(1,4-anthrylenevinylene). Macromolecules 27, 1922–1927 (1994). DOI
Taylor, P. N., Wylie, A. P., Huuskonen, J. & Anderson, H. L. Enhanced electronic conjugation in anthracene-linked porphyrins. Angew. Chem. Int. Ed. 37, 986–989 (1998). DOI
Susumu, K., Duncan, T. V. & Therien, M. J. Potentiometric, electronic structural, and ground- and excited-state optical properties of conjugated bis[(porphinato)zinc(II)] compounds featuring proquinoidal spacer units. J. Am. Chem. Soc. 127, 5186–5195 (2005). DOI
Talirz, L., Ruffieux, P. & Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 28, 6222–6231 (2016). DOI
Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017). DOI
Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018). DOI
Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). DOI
Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). DOI
Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018). DOI
Bennett, P. B. et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013). DOI
Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017). DOI
Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018). DOI
Borin Barin, G. et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: substrate transfer and ex situ characterization. ACS Appl. Nano Mater. 2, 2184–2192 (2019). DOI
Sánchez-Grande, A. et al. On-surface synthesis of ethynylene bridged anthracene polymers. Angew. Chem. Int. Ed. 58, 6559–6563 (2019). DOI
Bettanin, F. et al. Singlet La and Lb bands for N-acenes (N = 2–7): a CASSCF/CASPT2 study. J. Chem. Theory Comput. 13, 4297–4306 (2017). DOI
Asbóth, J. K., Oroszlány, L. & Pályi, A. in A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions 1–22 (Springer International Publishing, 2016).
Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018). DOI
Sun, Q. et al. On-surface formation of cumulene by dehalogenative homocoupling of alkenyl gem-dibromides. Angew. Chem. Int. Ed. 56, 12165–12169 (2017). DOI
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).
Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). DOI
Amy, F., Chan, C. & Kahn, A. Polarization at the gold/pentacene interface. Org. Electron. 6, 85–91 (2005). DOI
Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792 (2008). DOI
Kertesz, M., Choi, C. H. & Yang, S. Conjugated polymers and aromaticity. Chem. Rev. 105, 3448–3481 (2005). DOI
Jelínek, P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys.-Condens. Mat. 29, 343002 (2017). DOI
Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018). DOI
Karpfen, A. Ab initio studies on polymers. IV. Polydiacetylenes. J. Phys. C 13, 5673–5689 (1980). DOI
Hernandez, V., Castiglioni, C., del Zoppo, M. & Zerbi, G. Confinement potential and pi-electron delocalization in polyconjugated organic materials. Phys. Rev. B 50, 9815–9823 (1994). DOI
Estarellas, M. P., D’Amico, I. & Spiller, T. P. Topologically protected localised states in spin chains. Sci. Rep. 7, 42904 (2017). DOI
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J. Phys. Chem. B 105, 8475–8491 (2001). DOI
Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964). DOI
Gorodetsky, A. A. et al. Reticulated heterojunctions for photovoltaic devices. Angew. Chem. Int. Ed. 49, 7909–7912 (2010). DOI
Zeng, Z. et al. Stable tetrabenzo-Chichibabin’s hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. J. Am. Chem. Soc. 134, 14513–14525 (2012). DOI
Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009). DOI
Perdew, J. P., Burke, W. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). DOI
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993). DOI
Lewis, J. P. et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B Basic Res. 248, 1989–2007 (2011).
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014). DOI
Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017). DOI
Atomically Precise Control of Topological State Hybridization in Conjugated Polymers
Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs
Diradical Organic One-Dimensional Polymers Synthesized on a Metallic Surface