Tailoring topological order and π-conjugation to engineer quasi-metallic polymers

. 2020 Jun ; 15 (6) : 437-443. [epub] 20200420

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32313219

Grantová podpora
y2018/nmt-4783 Comunidad de Madrid
Y2018/nmt-4783 Comunidad de Madrid

Odkazy

PubMed 32313219
DOI 10.1038/s41565-020-0668-7
PII: 10.1038/s41565-020-0668-7
Knihovny.cz E-zdroje

Topological band theory predicts that a topological electronic phase transition between two insulators must proceed via closure of the electronic gap. Here, we use this transition to circumvent the instability of metallic phases in π-conjugated one-dimensional (1D) polymers. By means of density functional theory, tight-binding and GW calculations, we predict polymers near the topological transition from a trivial to a non-trivial quantum phase. We then use on-surface synthesis with custom-designed precursors to make polymers consisting of 1D linearly bridged acene moieties, which feature narrow bandgaps and in-gap zero-energy edge states when in the topologically non-trivial phase close to the topological transition point. We also reveal the fundamental connection between topological classes and resonant forms of 1D π-conjugated polymers.

Zobrazit více v PubMed

Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977). DOI

Farchioni, R. & Grosso, G. Organic electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids (Springer, 2001).

Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001). DOI

Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988). DOI

Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011). DOI

Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997). DOI

Roncali, J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28, 1761–1775 (2007). DOI

Chujo, Y. Conjugated Polymer Synthesis: Methods and Reactions (Wiley-VCH, 2010).

Steckler, T. T. et al. Very low band gap thiadiazoloquinoxaline donor–acceptor polymers as multi-tool conjugated polymers. J. Am. Chem. Soc. 136, 1190–1193 (2014). DOI

Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015). DOI

Kawabata, K., Saito, M., Osaka, I. & Takimiya, K. Very small bandgap π-conjugated polymers with extended thienoquinoids. J. Am. Chem. Soc. 138, 7725–7732 (2016). DOI

Scherf, U. & Müllen, K. Design and synthesis of extended pi-systems: monomers, oligomers, polymers. Synthesis 1–2, 23–38 (1992). DOI

Garay, R. O., Naarmann, H. & Muellen, K. Synthesis and characterization of poly(1,4-anthrylenevinylene). Macromolecules 27, 1922–1927 (1994). DOI

Taylor, P. N., Wylie, A. P., Huuskonen, J. & Anderson, H. L. Enhanced electronic conjugation in anthracene-linked porphyrins. Angew. Chem. Int. Ed. 37, 986–989 (1998). DOI

Susumu, K., Duncan, T. V. & Therien, M. J. Potentiometric, electronic structural, and ground- and excited-state optical properties of conjugated bis[(porphinato)zinc(II)] compounds featuring proquinoidal spacer units. J. Am. Chem. Soc. 127, 5186–5195 (2005). DOI

Talirz, L., Ruffieux, P. & Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mater. 28, 6222–6231 (2016). DOI

Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017). DOI

Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018). DOI

Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). DOI

Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). DOI

Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018). DOI

Bennett, P. B. et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013). DOI

Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017). DOI

Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018). DOI

Borin Barin, G. et al. Surface-synthesized graphene nanoribbons for room temperature switching devices: substrate transfer and ex situ characterization. ACS Appl. Nano Mater. 2, 2184–2192 (2019). DOI

Sánchez-Grande, A. et al. On-surface synthesis of ethynylene bridged anthracene polymers. Angew. Chem. Int. Ed. 58, 6559–6563 (2019). DOI

Bettanin, F. et al. Singlet La and Lb bands for N-acenes (N = 2–7): a CASSCF/CASPT2 study. J. Chem. Theory Comput. 13, 4297–4306 (2017). DOI

Asbóth, J. K., Oroszlány, L. & Pályi, A. in A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions 1–22 (Springer International Publishing, 2016).

Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018). DOI

Sun, Q. et al. On-surface formation of cumulene by dehalogenative homocoupling of alkenyl gem-dibromides. Angew. Chem. Int. Ed. 56, 12165–12169 (2017). DOI

Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). DOI

Amy, F., Chan, C. & Kahn, A. Polarization at the gold/pentacene interface. Org. Electron. 6, 85–91 (2005). DOI

Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792 (2008). DOI

Kertesz, M., Choi, C. H. & Yang, S. Conjugated polymers and aromaticity. Chem. Rev. 105, 3448–3481 (2005). DOI

Jelínek, P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys.-Condens. Mat. 29, 343002 (2017). DOI

Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018). DOI

Karpfen, A. Ab initio studies on polymers. IV. Polydiacetylenes. J. Phys. C 13, 5673–5689 (1980). DOI

Hernandez, V., Castiglioni, C., del Zoppo, M. & Zerbi, G. Confinement potential and pi-electron delocalization in polyconjugated organic materials. Phys. Rev. B 50, 9815–9823 (1994). DOI

Estarellas, M. P., D’Amico, I. & Spiller, T. P. Topologically protected localised states in spin chains. Sci. Rep. 7, 42904 (2017). DOI

Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J. Phys. Chem. B 105, 8475–8491 (2001). DOI

Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964). DOI

Gorodetsky, A. A. et al. Reticulated heterojunctions for photovoltaic devices. Angew. Chem. Int. Ed. 49, 7909–7912 (2010). DOI

Zeng, Z. et al. Stable tetrabenzo-Chichibabin’s hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. J. Am. Chem. Soc. 134, 14513–14525 (2012). DOI

Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009). DOI

Perdew, J. P., Burke, W. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). DOI

Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993). DOI

Lewis, J. P. et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B Basic Res. 248, 1989–2007 (2011).

Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014). DOI

Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...