Nitrous oxide as an effective AFM tip functionalization: a comparative study
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30800570
PubMed Central
PMC6369984
DOI
10.3762/bjnano.10.30
Knihovny.cz E-zdroje
- Klíčová slova
- Au(111), atomic force microscopy, carbon monoxide, functionalization, high resolution, nitrous oxide, submolecular resolution,
- Publikační typ
- časopisecké články MeSH
We investigate the possibility of functionalizing Au tips by N2O molecules deposited on a Au(111) surface and their further use for imaging with submolecular resolution. First, we characterize the adsorption of the N2O species on Au(111) by means of atomic force microscopy with CO-functionalized tips and density functional theory (DFT) simulations. Subsequently we devise a method of attaching a single N2O to a metal tip apex and benchmark its high-resolution imaging and spectroscopic capabilities using FePc molecules. Our results demonstrate the feasibility of high-resolution imaging. However, we find an inherent asymmetry of the N2O probe-particle adsorption on the tip apex, in contrast to a CO tip reference. These findings are consistent with DFT calculations of the N2O- and CO tip apexes.
Zobrazit více v PubMed
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W M, Jaspars M. Nat Chem. 2010;2(10):821–825. doi: 10.1038/nchem.765. PubMed DOI
Hanssen K Ø, Schuler B, Williams A J, Demissie T B, Hansen E, Andersen J H, Svenson J, Blinov K, Repisky M, Mohn F, et al. Angew Chem, Int Ed. 2012;51:12238–12241. doi: 10.1002/anie.201203960. PubMed DOI
Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew Chem. 2014;126:9150–9152. doi: 10.1002/ange.201403707. PubMed DOI
Pavliček N, Schuler B, Collazos S, Moll N, Pérez D, Guitián E, Meyer G, Peña D, Gross L. Nat Chem. 2015;7:623–628. doi: 10.1038/nchem.2300. PubMed DOI
Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G. Science. 2012;337:1326–1329. doi: 10.1126/science.1225621. PubMed DOI
Mohn F, Gross L, Moll N, Meyer G. Nat Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI
Hapala P, Švec M, Stetsovych O, van der Heijden N J, Ondráček M, van der Lit J, Mutombo P, Swart I, Jelínek P. Nat Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC
Albrecht F, Repp J, Fleischmann M, Scheer M, Ondráček M, Jelínek P. Phys Rev Lett. 2015;115(7):076101. doi: 10.1103/physrevlett.115.076101. PubMed DOI
Moreno C, Stetsovych O, Shimizu T K, Custance O. Nano Lett. 2015;15:2257–2262. doi: 10.1021/nl504182w. PubMed DOI
Albrecht F, Pavliček N, Herranz-Lancho C, Ruben M, Repp J. J Am Chem Soc. 2015;137:7424–7428. doi: 10.1021/jacs.5b03114. PubMed DOI
Albrecht F, Bischoff F, Auwärter W, Barth J V, Repp J. Nano Lett. 2016;16:7703–7709. doi: 10.1021/acs.nanolett.6b03769. PubMed DOI
Schuler B, Meyer G, Peña D, Mullins O C, Gross L. J Am Chem Soc. 2015;137:9870–9876. doi: 10.1021/jacs.5b04056. PubMed DOI
Schuler B, Fatayer S, Meyer G, Rogel E, Moir M, Zhang Y, Harper M R, Pomerantz A E, Bake K D, Witt M, et al. Energy Fuels. 2017;31(7):6856–6861. doi: 10.1021/acs.energyfuels.7b00805. DOI
Riss A, Paz A P, Wickenburg S, Tsai H-Z, De Oteyza D G, Bradley A J, Ugeda M M, Gorman P, Jung H S, Crommie M F, et al. Nat Chem. 2016;8(7):678–683. doi: 10.1038/nchem.2506. PubMed DOI
de Oteyza D G, Gorman P, Chen Y-C, Wickenburg S, Riss A, Mowbray D J, Etkin G, Pedramrazi Z, Tsai H-Z, Rubio A, et al. Science. 2013;340:1434–1437. doi: 10.1126/science.1238187. PubMed DOI
Shiotari A, Nakae T, Iwata K, Mori S, Okujima T, Uno H, Sakaguchi H, Sugimoto Y. Nat Commun. 2017;8:16089. doi: 10.1038/ncomms16089. PubMed DOI PMC
Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H-Z, Jung H S, Lin S, Crommie M F, Fischer F R. Angew Chem, Int Ed. 2015;54:15143–15146. doi: 10.1002/anie.201507104. PubMed DOI
Stetsovych O, Švec M, Vacek J, Chocholoušová J V, Jančařík A, Rybáček J, Kosmider K, Stará I G, Jelínek P, Starý I. Nat Chem. 2017;9(3):213–218. doi: 10.1038/nchem.2662. PubMed DOI
de la Torre B, Švec M, Hapala P, Redondo J, Krejčí O, Lo R, Manna D, Sarmah A, Nachtigallová D, Tuček J, et al. Nat Commun. 2018;9:2831. doi: 10.1038/s41467-018-05163-y. PubMed DOI PMC
Hauptmann N, Mohn F, Gross L, Meyer G, Frederiksen T, Berndt R. New J Phys. 2012;14(7):073032. doi: 10.1088/1367-2630/14/7/073032. DOI
Sweetman A M, Jarvis S P, Sang H, Lekkas I, Rahe P, Wang Y, Wang J, Champness N R, Kantorovich L, Moriarty P. Nat Commun. 2014;5:3931. doi: 10.1038/ncomms4931. PubMed DOI PMC
Shiotari A, Odani T, Sugimoto Y. Phys Rev Lett. 2018;121:116101. doi: 10.1103/physrevlett.121.116101. PubMed DOI
Mohn F, Schuler B, Gross L, Meyer G. Appl Phys Lett. 2013;102(7):073109. doi: 10.1063/1.4793200. DOI
Schuler B, Liu W, Tkatchenko A, Moll N, Meyer G, Mistry A, Fox D, Gross L. Phys Rev Lett. 2013;111:106103. doi: 10.1103/physrevlett.111.106103. PubMed DOI
Mönig H, Hermoso D R, Díaz Arado O, Todorović M, Timmer A, Schüer S, Langewisch G, Pérez R, Fuchs H. ACS Nano. 2016;10(1):1201–1209. doi: 10.1021/acsnano.5b06513. PubMed DOI
Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondráček M, Jelínek P, Wang E, et al. Nat Commun. 2018;9:122. doi: 10.1038/s41467-017-02635-5. PubMed DOI PMC
Jelínek P. J Phys: Condens Matter. 2017;29:343002. doi: 10.1088/1361-648x/aa76c7. PubMed DOI
Wagner C, Green M F B, Leinen P, Deilmann T, Krüger P, Rohlfing M, Temirov R, Tautz F S. Phys Rev Lett. 2015;115(2):026101. doi: 10.1103/physrevlett.115.026101. PubMed DOI
Chiang C-l, Xu C, Han Z, Ho W. Science. 2014;344:885–888. doi: 10.1126/science.1253405. PubMed DOI
de la Torre B, Švec M, Foti G, Krejčí O, Hapala P, Garcia-Lekue A, Frederiksen T, Zbořil R, Arnau A, Vázquez H, et al. Phys Rev Lett. 2017;119:166001. doi: 10.1103/physrevlett.119.166001. PubMed DOI
Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R, Jelínek P. Phys Rev B. 2014;90:085421. doi: 10.1103/physrevb.90.085421. PubMed DOI
Temirov R, Soubatch S, Neucheva O, Lassise A C, Tautz F S. New J Phys. 2008;10(5):053012. doi: 10.1088/1367-2630/10/5/053012. DOI
Wagner C, Temirov R. Prog Surf Sci. 2015;90:194–222. doi: 10.1016/j.progsurf.2015.01.001. DOI
Kokalj A, Matsushima T. J Chem Phys. 2005;122:034708. doi: 10.1063/1.1829652. PubMed DOI
Murray J S, Politzer P. Wiley Interdiscip Rev: Comput Mol Sci. 2011;1:153–163. doi: 10.1002/wcms.19. DOI
Hirshfeld F L. Theor Chim Acta. 1977;44:129–138. doi: 10.1007/bf00549096. DOI
Lantz M A. Science. 2001;291:2580–2583. doi: 10.1126/science.1057824. PubMed DOI
Giessibl F J. Appl Phys Lett. 2001;78:123–125. doi: 10.1063/1.1335546. DOI
Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J, Baro A M. Rev Sci Instrum. 2007;78(1):013705. doi: 10.1063/1.2432410. PubMed DOI
Momma K, Izumi F. J Appl Crystallogr. 2011;44:1272–1276. doi: 10.1107/s0021889811038970. DOI
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M. Comput Phys Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Tkatchenko A, Scheffler M. Phys Rev Lett. 2009;102:073005. doi: 10.1103/physrevlett.102.073005. PubMed DOI
van Lenthe E, van Leeuwen R, Baerends E J, Snijders J G. Int J Quantum Chem. 1996;57:281–293. doi: 10.1002/(sici)1097-461x(1996)57:3<281::aid-qua2>3.0.co;2-u. DOI
Hapala P, Temirov R, Tautz F S, Jelínek P. Phys Rev Lett. 2014;113:226101. doi: 10.1103/physrevlett.113.226101. PubMed DOI