Modern Water Treatment Technology Based on Industry 4.0
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31130/1312/3103
Czech University of Life Sciences Prague
PubMed
40293089
PubMed Central
PMC11945880
DOI
10.3390/s25061925
PII: s25061925
Knihovny.cz E-zdroje
- Klíčová slova
- Industry 4.0, autonomous water treatment, decentralized solutions, smart sensors, water quality,
- Publikační typ
- časopisecké články MeSH
Access to clean water remains a critical global challenge, particularly in under-resourced regions. This study introduces an autonomous water treatment system leveraging Industry 4.0 technologies, including advanced smart sensors, real-time monitoring, and automation. The system employs a multi-stage filtration process-mechanical, chemical, and UV sterilization-to treat water with varying contamination levels. Smart sensors play a pivotal role in ensuring precise control and adaptability across the entire process. Experimental validation was conducted on three water types: pond, river, and artificially contaminated water. Results revealed significant reductions in key contaminants such as PPM, pH, and electrical conductivity, achieving water quality standards set by the WHO. Statistical analyses confirmed the system's reliability and adaptability under diverse conditions. These findings underscore the potential of smart, sensor-integrated, decentralized water treatment systems to effectively address global water security challenges. Future research could focus on scalability, renewable energy integration, and long-term operational durability to enhance applicability in remote areas.
Zobrazit více v PubMed
UNESCO World Water Assessment Programme The United Nations World Water Development Report 2024: Water for Prosperity and Peace. UNESCO Report 2024. [(accessed on 21 January 2025)]. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000388948.
Nguedia K.D., Njila R.N., Ndongo B., Dongmo A.K., Jiague R.R.C., Tedontsah V.P.L. Vulnerability of groundwater to pollution in the highlands by a combined approach of AHP method and remote sensing. Groundw. Sustain. Dev. 2024;26:101184. doi: 10.1016/j.gsd.2024.101184. DOI
Ang W.L., Mohammad A.W., Hilal N., Leo C.P. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination. 2015;363:2–18. doi: 10.1016/j.desal.2014.03.008. DOI
Zakariazadeh A., Ahshan R., Al Abri R., Al-Abri M. Renewable energy integration in sustainable water systems: A review. Clean. Eng. Technol. 2024;18:100722. doi: 10.1016/j.clet.2024.100722. DOI
Pooi C.K., Ng H.Y. Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water. 2018;1:11. doi: 10.1038/s41545-018-0011-0. DOI
Bwapwa J.K., Mkhize N., Seyam M. Evaluation of operational efficiency and performance for a water treatment plant. S. Afr. J. Chem. Eng. 2024;49:11–34. doi: 10.1016/j.sajce.2024.04.003. DOI
Zouboulis A.I., Katsoyiannis I.A. Recent advances in water and wastewater treatment with emphasis in membrane treatment operations. Water. 2019;11:45. doi: 10.3390/w11010045. DOI
UNICEF. WHO Progress on Sanitation and Drinking Water—2015 Update and MDG Assessment. 2015. [(accessed on 3 February 2025)]. Available online: https://books.google.cz/books?hl=cs&lr=&id=KFA0DgAAQBAJ.
Ghernaout D., Elboughdiri N. Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Libr. J. 2020;7:1–15. doi: 10.4236/oalib.1106139. DOI
Senna D.A., Moreira V.R., Amaral M.C.S., Coutinho de Paula E., Pereira L.P., Batista R.M.G., Ferreira L.A.F., Rezende S. Industry 4.0 as a strategy to contribute to the water supply universalization in developing countries. J. Environ. Chem. Eng. 2023;11:111198. doi: 10.1016/j.jece.2023.111198. DOI
Sarkar B., Venkateshwarlu N., Rao R.N., Bhattacharjee C., Kale V. Potable water production from pesticide contaminated surface water—A membrane-based approach. Desalination. 2007;204:368–373. doi: 10.1016/j.desal.2006.02.041. DOI
Ejraei A., Aroon M.A., Saravani A.Z. Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes. J. Water Process Eng. 2019;28:45–53. doi: 10.1016/j.jwpe.2019.01.003. DOI
Zhu M., Wang J., Yang X., Zhang Y., Zhang L., Ren H., Wu B., Ye L. A review of the application of machine learning in water quality evaluation. Environ. Res. 2022;194:110619. doi: 10.1016/j.eehl.2022.06.001. PubMed DOI PMC
Porada S., Zhao R., van der Wal A., Presser V., Biesheuvel P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013;58:1388–1442. doi: 10.1016/j.pmatsci.2013.03.005. DOI
Lom M., Pribyl O., Svitek M. Industry 4.0 as a part of smart cities; Proceedings of the Smart Cities Symposium Prague (SCSP); Prague, Czech Republic. 26–27 May 2016; DOI
Zhou H., Smith D. Advanced technologies in water and wastewater treatment. Can. J. Civ. Eng. 2001;28:49–66. doi: 10.1139/l00-091. DOI
Singh M., Ahmed S. IoT based smart water management systems: A systematic review. Pt 11Mater. Today Proc. 2021;46:5211–5218. doi: 10.1016/j.matpr.2020.08.588. DOI
Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019;48:463–487. doi: 10.1039/C8CS00493E. PubMed DOI
Mohamed A.Y.A., Tuohy P., Healy M.G., Ó hUallacháin D., Fenton O., Siggins A. Effects of wastewater pre-treatment on clogging of an intermittent sand filter. Sci. Total Environ. 2023;876:162605. doi: 10.1016/j.scitotenv.2023.162605. PubMed DOI
Van der Bruggen B. Sustainable implementation of innovative technologies for water purification. Nat. Rev. Chem. 2021;5:217–218. doi: 10.1038/s41570-021-00264-7. PubMed DOI
Mustapha M.A. Advanced Membrane Technologies for Water Purification. 2024. [(accessed on 23 February 2025)]. Available online: https://www.researchgate.net/publication/379311074_Advanced_Membrane_Technologies_for_Water_Purification.
Monje V., Nobel P., Junicke H., Kjellberg K., Gernaey K.V., Flores-Alsina X. Assessment of alkaline stabilization processes in industrial waste streams using a model-based approach. J. Environ. Manag. 2021;293:112806. doi: 10.1016/j.jenvman.2021.112806. PubMed DOI
Chabi K., Zeng J., Guo L., Li X., Ye C., Yu X. Small-scale drinking water treatment unit of filtration and UV disinfection for remote areas. Water Supply. 2020;20:2106–2118. doi: 10.2166/ws.2020.109. DOI
Satyam S., Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon. 2024;10:e29573. doi: 10.1016/j.heliyon.2024.e29573. PubMed DOI PMC
Lin T., Jegatheesan V., Shu L., Rene E.R. Challenges in Environmental Science/Engineering and Emerging Sustainable Practices for Future Water Conservation. Chemosphere. 2020;238:124591. doi: 10.1016/j.chemosphere.2019.124591. PubMed DOI