Modern Water Treatment Technology Based on Industry 4.0

. 2025 Mar 20 ; 25 (6) : . [epub] 20250320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40293089

Grantová podpora
31130/1312/3103 Czech University of Life Sciences Prague

Access to clean water remains a critical global challenge, particularly in under-resourced regions. This study introduces an autonomous water treatment system leveraging Industry 4.0 technologies, including advanced smart sensors, real-time monitoring, and automation. The system employs a multi-stage filtration process-mechanical, chemical, and UV sterilization-to treat water with varying contamination levels. Smart sensors play a pivotal role in ensuring precise control and adaptability across the entire process. Experimental validation was conducted on three water types: pond, river, and artificially contaminated water. Results revealed significant reductions in key contaminants such as PPM, pH, and electrical conductivity, achieving water quality standards set by the WHO. Statistical analyses confirmed the system's reliability and adaptability under diverse conditions. These findings underscore the potential of smart, sensor-integrated, decentralized water treatment systems to effectively address global water security challenges. Future research could focus on scalability, renewable energy integration, and long-term operational durability to enhance applicability in remote areas.

Zobrazit více v PubMed

UNESCO World Water Assessment Programme The United Nations World Water Development Report 2024: Water for Prosperity and Peace. UNESCO Report 2024. [(accessed on 21 January 2025)]. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000388948.

Nguedia K.D., Njila R.N., Ndongo B., Dongmo A.K., Jiague R.R.C., Tedontsah V.P.L. Vulnerability of groundwater to pollution in the highlands by a combined approach of AHP method and remote sensing. Groundw. Sustain. Dev. 2024;26:101184. doi: 10.1016/j.gsd.2024.101184. DOI

Ang W.L., Mohammad A.W., Hilal N., Leo C.P. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination. 2015;363:2–18. doi: 10.1016/j.desal.2014.03.008. DOI

Zakariazadeh A., Ahshan R., Al Abri R., Al-Abri M. Renewable energy integration in sustainable water systems: A review. Clean. Eng. Technol. 2024;18:100722. doi: 10.1016/j.clet.2024.100722. DOI

Pooi C.K., Ng H.Y. Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water. 2018;1:11. doi: 10.1038/s41545-018-0011-0. DOI

Bwapwa J.K., Mkhize N., Seyam M. Evaluation of operational efficiency and performance for a water treatment plant. S. Afr. J. Chem. Eng. 2024;49:11–34. doi: 10.1016/j.sajce.2024.04.003. DOI

Zouboulis A.I., Katsoyiannis I.A. Recent advances in water and wastewater treatment with emphasis in membrane treatment operations. Water. 2019;11:45. doi: 10.3390/w11010045. DOI

UNICEF. WHO Progress on Sanitation and Drinking Water—2015 Update and MDG Assessment. 2015. [(accessed on 3 February 2025)]. Available online: https://books.google.cz/books?hl=cs&lr=&id=KFA0DgAAQBAJ.

Ghernaout D., Elboughdiri N. Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Libr. J. 2020;7:1–15. doi: 10.4236/oalib.1106139. DOI

Senna D.A., Moreira V.R., Amaral M.C.S., Coutinho de Paula E., Pereira L.P., Batista R.M.G., Ferreira L.A.F., Rezende S. Industry 4.0 as a strategy to contribute to the water supply universalization in developing countries. J. Environ. Chem. Eng. 2023;11:111198. doi: 10.1016/j.jece.2023.111198. DOI

Sarkar B., Venkateshwarlu N., Rao R.N., Bhattacharjee C., Kale V. Potable water production from pesticide contaminated surface water—A membrane-based approach. Desalination. 2007;204:368–373. doi: 10.1016/j.desal.2006.02.041. DOI

Ejraei A., Aroon M.A., Saravani A.Z. Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes. J. Water Process Eng. 2019;28:45–53. doi: 10.1016/j.jwpe.2019.01.003. DOI

Zhu M., Wang J., Yang X., Zhang Y., Zhang L., Ren H., Wu B., Ye L. A review of the application of machine learning in water quality evaluation. Environ. Res. 2022;194:110619. doi: 10.1016/j.eehl.2022.06.001. PubMed DOI PMC

Porada S., Zhao R., van der Wal A., Presser V., Biesheuvel P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013;58:1388–1442. doi: 10.1016/j.pmatsci.2013.03.005. DOI

Lom M., Pribyl O., Svitek M. Industry 4.0 as a part of smart cities; Proceedings of the Smart Cities Symposium Prague (SCSP); Prague, Czech Republic. 26–27 May 2016; DOI

Zhou H., Smith D. Advanced technologies in water and wastewater treatment. Can. J. Civ. Eng. 2001;28:49–66. doi: 10.1139/l00-091. DOI

Singh M., Ahmed S. IoT based smart water management systems: A systematic review. Pt 11Mater. Today Proc. 2021;46:5211–5218. doi: 10.1016/j.matpr.2020.08.588. DOI

Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019;48:463–487. doi: 10.1039/C8CS00493E. PubMed DOI

Mohamed A.Y.A., Tuohy P., Healy M.G., Ó hUallacháin D., Fenton O., Siggins A. Effects of wastewater pre-treatment on clogging of an intermittent sand filter. Sci. Total Environ. 2023;876:162605. doi: 10.1016/j.scitotenv.2023.162605. PubMed DOI

Van der Bruggen B. Sustainable implementation of innovative technologies for water purification. Nat. Rev. Chem. 2021;5:217–218. doi: 10.1038/s41570-021-00264-7. PubMed DOI

Mustapha M.A. Advanced Membrane Technologies for Water Purification. 2024. [(accessed on 23 February 2025)]. Available online: https://www.researchgate.net/publication/379311074_Advanced_Membrane_Technologies_for_Water_Purification.

Monje V., Nobel P., Junicke H., Kjellberg K., Gernaey K.V., Flores-Alsina X. Assessment of alkaline stabilization processes in industrial waste streams using a model-based approach. J. Environ. Manag. 2021;293:112806. doi: 10.1016/j.jenvman.2021.112806. PubMed DOI

Chabi K., Zeng J., Guo L., Li X., Ye C., Yu X. Small-scale drinking water treatment unit of filtration and UV disinfection for remote areas. Water Supply. 2020;20:2106–2118. doi: 10.2166/ws.2020.109. DOI

Satyam S., Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon. 2024;10:e29573. doi: 10.1016/j.heliyon.2024.e29573. PubMed DOI PMC

Lin T., Jegatheesan V., Shu L., Rene E.R. Challenges in Environmental Science/Engineering and Emerging Sustainable Practices for Future Water Conservation. Chemosphere. 2020;238:124591. doi: 10.1016/j.chemosphere.2019.124591. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...