• This record comes from PubMed

Patterns of host use by brood parasitic Maculinea butterflies across Europe

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.

Amperstraße 13 80638 Munich Germany

Behavioural Ecology and Conservation Group Biodiversity Research Centre Earth and Life Institute Université catholique de Louvain Louvain la Neuve Belgium

Büro Geyer und Dolek Alpenblick 12 82237 Wörthsee Germany

Centre for Ecology and Hydrology Wallingford Maclean Building Benson Lane Wallingford OX10 8BB UK

Centre for Social Evolution Department of Biology University of Copenhagen Universitetsparken 15 2100 Copenhagen Denmark

Department of Community Ecology UFZ Helmholtz Centre for Environmental Research Theodor Lieser Strasse 4 06120 Halle Germany

Department of Evolutionary Zoology and Human Biology University of Debrecen 4032 Debrecen Egyetem tér 1 Hungary

Department of Forest Science and Landscape Center for the Research and Technology of Agro Environmental and Biological Sciences University of Trás os Montes and Alto Douro 5000 911 Vila Real Portugal

Department of Life Sciences and Systems Biology University of Turin Turin 10123 Italy

Department of Zoology Hungarian Natural History Museum 1088 Budapest Baross u 13 Hungary

Department of Zoology Hydrobiology Fishery and Apiculture Faculty of AgriScience Mendel University Brno Zemedelska 1 Brno 61300 Czech Republic

Department of Zoology University of Oxford Oxford OX1 3PS UK

Dutch Butterfly Conservation and Butterfly Conservation Europe PO Box 506 6700 AM Wageningen The Netherlands

Facultad de Ciencias Departamento de Biología Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e 04103 Leipzig Germany

Gevninge Bygade 10 4000 Roskilde Denmark

Hungarian Department of Biology and Ecology Babeş Bolyai University Clinicilor St 5 7 400006 Cluj Napoca Romania

Institut des Sciences de l'Evolution CNRS UMR 5554 Université de Montpellier CC 065 34095 Montpellier Cedex 05 France Cedex 05 France

Institute of Biology University of Bialystok Ciołkowskiego 1 J 15 245 Białystok Poland

Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 30 387 Kraków Poland

Institute of Zoology Department of Integrative Biology and Biodiversity Research University of Natural Resources and Live Sciences Gregor Mendel Straße 33 1180 Vienna Austria

Laboratory of Social and Myrmecophilous Insects Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland

Lithuanian Entomological Society Akademijos 2 08412 Vilnius Lithuania

Molecular Ecology Group Department of Ecology University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria

MTA ELTE MTM Ecology Research Group Pázmány Péter sétány 1 C Budapest H1117 Hungary

Research Institute for Nature and Forest Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussels Belgium

See more in PubMed

Lafferty KD, Kuris AM. 2002. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513. (10.1016/S0169-5347(02)02615-0) DOI

Whitlock MC. 1996. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65–S77. (10.1086/285902) DOI

Forister ML, Dyer LA, Singer MS, Stireman JO III, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991. (10.1890/11-0650.1) PubMed DOI

Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233. (10.1146/annurev.es.19.110188.001231) DOI

Combes C. 2001. Parasitism: the ecology and evolution of intimate interactions. Chicago, IL: University of Chicago Press.

Nash DR, Als TD, Boomsma JJ. 2011. Survival and growth of parasitic Maculinea alcon caterpillars (Lepidoptera, Lycaenidae) in laboratory nests of three Myrmica ant species. Insect Soc. 58, 391–401. (10.1007/s00040-011-0157-y) PubMed DOI

Feeny P. 1976. Plant apparency and chemical defense. In Biochemical interaction between plants and insects: Proc. of the fifteenth annual meeting of the Phytochemical Society of North America (eds Wallace JW, Mansell RL), pp. 1–40. New York, NY: Plenum Press.

Schmid Hempel P. 2011. Evolutionary parasitology – the integrated study of infections, immunology, ecology, and genetics. Oxford, UK: Oxford University Press.

Beldomenico PM, Begon M. 2010. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27. (10.1016/j.tree.2009.06.015) PubMed DOI

Little TJ, Watt K, Ebert D. 2006. Parasite-host specificity: experimental studies on the basis of parasite adaptation. Evolution 60, 31–38. (10.1111/j.0014-3820.2006.tb01079.x) PubMed DOI

Thompson JN. 1994. The coevolutionary process. Chicago, IL: University of Chicago Press.

Fox LR. 1988. Diffuse coevolution within complex communities. Ecology 69, 906–907. (10.2307/1941243) DOI

Janzen DH. 1980. When is it coevolution? Evolution 34, 611–612. (10.1111/j.1558-5646.1980.tb04849.x) PubMed DOI

Rothstein SI. 1990. A model system for coevolution: avian brood parasitism. Annu. Rev. Ecol. Syst. 21, 481–508. (10.1146/annurev.es.21.110190.002405) DOI

Kilner RM, Langmore NE. 2011. Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol. Rev. 86, 836–852. (10.1111/j.1469-185X.2010.00173.x) PubMed DOI

Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution? Am. Nat. 153, S1–S14. (10.1086/303208) DOI

Dawkins R, Krebs JR. 1979. Arms races between and within species. Proc. R. Soc. Lond. B 205, 489–511. (10.1098/rspb.1979.0081) PubMed DOI

Thompson JN. 2005. The geographic mosaic of coevolution. Chicago, IL: University of Chicago Press.

Thomas JA, Elmes GW, Wardlaw JC, Woyciechowski M. 1989. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia 79, 452–457. (10.1007/Bf00378660) PubMed DOI

Elmes G, Thomas JA. 1987. Die Gattung Maculinea. In Tagfalter und ihre lebensräume: arten, gefährdung und schutz (ed. Geiger W.), pp. 354–368. Basel, Switzerland: Schweizerischer Bund für Naturschutz.

Thomas JA, Elmes GW, Wardlaw JC. 1998. Polymorphic growth in larvae of the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 265, 1895–1901. (10.1098/rspb.1998.0517) DOI

Fiedler K. 2006. Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae) – a review. Myrmecol. News 9, 77–87.

Thomas JA, Elmes GW, Schönrogge K, Simcox DJ, Settele J. 2005. Primary hosts, secondary hosts and non-hosts: common confusions in the interpretation of host specificity in Maculinea butterflies and other social parasites of ants. In Studies on the ecology and conservation of butterflies in Europe (eds Settele J, Kühn E, Thomas JA), pp. 99–104. Sofia, Bulgaria: Pensoft.

Yamaguchi S. 1988. The life histories of five myrmecophilous lycaenid butterflies of Japan. Tokyo, Japan: Kodansha.

Hiraga S. 2003. Reidentifying of host ants of Maculinea arionides. Yadoriga 196, 31–34.

Maruyama M, Komatsu T, Kudo S, Shimada T, Kinomura K. 2013. The guests of Japanese ants. Minamiyana, Japan: Tokai University Press.

Ueda S, Komatsu T, Itino T, Arai R, Sakamoto H. 2016. Host-ant specificity of endangered large blue butterflies (Phengaris spp., Lepidoptera: Lycaenidae) in Japan. Sci. Rep. 6, 36364 (10.1038/srep36364) PubMed DOI PMC

Fric Z, Wahlberg N, Pech P, Zrzavy J. 2007. Phylogeny and classification of the Phengaris–Maculinea clade (Lepidoptera: Lycaenidae): total evidence and phylogenetic species concepts. Syst. Entomol. 32, 558–567. (10.1111/j.1365-3113.2007.00387.x) DOI

Kőrösi Á, Örvössy N, Batáry P, Harnos A, Peregovits L. 2012. Different habitat selection by two sympatric Maculinea butterflies at small spatial scale. Ins. Conserv. Diver. 5, 118–126. (10.1111/j.1752-4598.2011.00138.x) DOI

Figurny E, Woyciechowski M. 1998. Flowerhead selection for oviposition by females of the sympatric butterfly species Maculinea teleius and M. nausithous (Lepidoptera : Lycaenidae). Entomol. Gen. 23, 215–222. (10.1127/entom.gen/23/1998/215) DOI

Thomas JA, Elmes GW. 2001. Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc. R. Soc. Lond. B 268, 471–477. (10.1098/rspb.2000.1398) PubMed DOI PMC

Thomas JA. 1984. The behaviour and habitat requirements of Maculinea nausithous (the dusky large blue butterfly) and M. teleius (the scarce large blue) in France. Biol. Conserv. 28, 325–347. (10.1016/0006-3207(84)90040-5) DOI

Thomas JA. 1995. The ecology and conservation of Maculinea arion and other European species of large blue butterfly. In Ecology and conservation of butterflies (ed. Pullin AS.), pp. 180–197. Berlin, Germany: Springer.

Elmes GW, Thomas JA, Wardlaw JC. 1991. Larvae of Maculinea rebeli, a large-blue butterfly, and their Myrmica host ants: wild adoption and behavior in ant-nests. J. Zool. 223, 447–460. (10.1111/j.1469-7998.1991.tb04775.x) DOI

Frohawk FW. 1916. Further observations on the last stage of the larva of Lycaena arion. Trans. Entomol. Soc. Lond. 1915, 313–316. (10.1111/j.1365-2311.1916.tb02538.x) DOI

Als TD, Nash DR, Boomsma JJ. 2001. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim. Behav. 62, 99–106. (10.1006/anbe.2001.1716) DOI

Thomas JA. 2002. Larval niche selection and evening exposure enhance adoption of a predacious social parasite, Maculinea arion (large blue butterfly), by Myrmica ants. Oecologia 132, 531–537. (10.1007/s00442-002-1002-9) PubMed DOI

Akino T, Knapp JJ, Thomas JA, Elmes GW. 1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426. (10.1098/rspb.1999.0796) DOI

Thomas JA, Elmes GW, Sielezniew M, Stankiewicz-Fiedurek A, Simcox DJ, Settele J, Schönrogge K. 2013. Mimetic host shifts in an endangered social parasite of ants. Proc. R. Soc. B 280, 20122336 (10.1098/rspb.2012.2336) PubMed DOI PMC

Elmes GW, Akino T, Thomas JA, Clarke RT, Knapp JJ. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130, 525–535. (10.1007/s00442-001-0857-5) PubMed DOI

Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. 2008. A mosaic of chemical coevolution in a large blue butterfly. Science 319, 88–90. (10.1126/science.1149180) PubMed DOI

Casacci LP, Schönrogge K, Thomas JA, Balletto E, Bonelli S, Barbero F. 2019 Host specificity pattern and chemical deception in a social parasite of ants. Sci. Rep., 5913–4041. PubMed PMC

Schlick-Steiner BC, Steiner FM, Höttinger H, Nikiforov A, Mistrik R, Schafellner C, Baier P, Christian E. 2004. A butterfly's chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften 91, 209–214. (10.1007/s00114-004-0518-8) PubMed DOI

Fiedler K. 1990. New information on the biology of Maculinea nausithous and M. teleius (Lepidoptera: Lycaenidae). Nota lepid 12, 246–256.

Sala M, Casacci LP, Balletto E, Bonelli S, Barbero F. 2014. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9, e94341 (10.1371/journal.pone.0094341) PubMed DOI PMC

Thomas JA, Elmes GW. 1998. Higher productivity at the cost of increased host-specificity when Maculinea butterfly larvae exploit ant colonies through trophallaxis rather than by predation. Ecol. Entomol. 23, 457–464. (10.1046/j.1365-2311.1998.00153.x) DOI

Elfferich NW. 1998. New facts on the life history of the dusky large blue Maculinea nausithous (Lepidoptera: Lycaenidae) obtained by breeding with Myrmica ants in plaster nests. Deinsea 4, 97–102.

Thomas JA, Wardlaw JC. 1992. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91, 101–109. (10.1007/BF00317247) PubMed DOI

Wardlaw JC, Thomas JA, Elmes GW. 2000. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. 95, 97–103. (10.1046/j.1570-7458.2000.00646.x) DOI

Witek M, Slipinski P, Naumiec K, Krupski A, Babik H, Walter B, Symonowicz B, Dubiec A. 2016. Performance of Myrmica ant colonies is correlated with the presence of social parasites. Ecol. Entomol. 41, 284–291. (10.1111/een.12299) DOI

Nash DR, Boomsma JJ. 2008. Communication between hosts and social parasites. In Sociobiology of communication - an interdisciplinary approach (eds d'Ettorre P, Hughes DP), pp. 55–79. Oxford, UK: Oxford University Press.

Schönrogge K, Wardlaw JC, Peters AJ, Everett S, Thomas JA, Elmes GW. 2004. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J. Chem. Ecol. 30, 91–107. (10.1023/B:JOEC.0000013184.18176.a9) PubMed DOI

Barbero F, Thomas JA, Bonelli S, Balletto E, Schonrogge K. 2009. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323, 782–785. (10.1126/science.1163583) PubMed DOI

Thomas JA, Schönrogge K, Bonelli S, Barbero F, Balletto E. 2010. Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants. Commun. Integr. Biol. 3, 169–171. (10.4161/cib.3.2.10603) PubMed DOI PMC

Witek M, Skorka P, Sliwinska EB, Nowicki P, Moron D, Settele J, Woyciechowski M. 2011. Development of parasitic Maculinea teleius (Lepidoptera, Lycaenidae) larvae in laboratory nests of four Myrmica ant host species. Insectes Soc. 58, 403–411. (10.1007/s00040-011-0156-z) PubMed DOI PMC

Elmes GW, Wardlaw JC, Schonrogge K, Thomas JA, Clarke RT. 2004. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. 110, 53–63. (10.1111/j.0013-8703.2004.00121.x) DOI

Fürst MA, Durey M, Nash DR. 2012. Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc. R. Soc. B 279, 516–522. (10.1098/rspb.2011.0581) PubMed DOI PMC

Elmes GW, Thomas JA, Hammarstedt O, Munguira ML, Martín J, Van Der Made J. 1994. Differences in host-ant specificity between Spanish, Dutch and Swedish populations of the endangered butterfly, Maculinea alcon (Denis et Schiff.) (Lepidoptera). Memorabil. Zool. 48, 55–68.

Pech P, Fric Z, Konvicka M. 2007. Species-specificity of the Phengaris (Maculinea)--Myrmica host system: fact or myth? (Lepidoptera: Lycaenidae; Hymenoptera: Formicidae). Sociobiology 50, 983–1003.

Settele J, Thomas JA, Boomsma JJ, Kuehn E, Nash DR, Anton C, Woyciechowski M, Varga Z. 2002. MACulinea butterflies of the habitats directive and European red list as indicators and tools for conservation and MANagment (MacMan). Verh. Ges. Ökol 32, 63.

Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494. (10.1038/33136) DOI

Thomas J. 1980. Why did the large blue become extinct in Britain? Oryx 15, 243–247. (10.1017/s0030605300024625) DOI

Wynhoff I. 1998. Lessons from the reintroduction of Maculinea teleius and M. nausithous in the Netherlands. J. Insect. Conserv. 2, 47–57. (10.1023/A:1009692723056) DOI

Van Swaay CAM, Warren MS. 1999. Red data book of European butterflies (Rhopalocera). Strasbourg, France: Council of Europe Publishing.

van Swaay C, et al. 2010. European Red list of butterflies. Luxembourg: Publications Office of the European Union.

van Swaay C, et al. 2011. Applying IUCN criteria to invertebrates: how red is the Red List of European butterflies? Biol. Conserv. 144, 470–478. (10.1016/j.biocon.2010.09.034) DOI

Thomas JA, Simcox DJ, Clarke RT. 2009. Successful conservation of a threatened Maculinea butterfly. Science 325, 80–83. (10.1126/science.1175726) PubMed DOI

Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Hsu YF, Mignault AA, Boomsma JJ, Pierce NE. 2004. The evolution of alternative parasitic life histories in large blue butterflies. Nature 432, 386–390. (10.1038/nature03020) PubMed DOI

Sielezniew M, Rutkowski R, Ponikwicka-Tyszko D, Dzienkańska I, Švitra G. 2012. Differences in genetic variability between two ecotypes of the endangered myrmecophilous butterfly Phengaris (=Maculinea) alcon—the setting of conservation priorities. Insect Conserv. Diversity 5, 223–236. (10.1111/j.1752-4598.2011.00163.x). DOI

Koubínová D, Dinca V, Dapporto L, Voda R, Suchan T, Vila R, Alvarez N. 2017. Genomics of extreme ecological specialists: multiple convergent evolution but no genetic divergence between ecotypes of Maculinea alcon butterflies. Sci. Rep. 7, 13752 (10.1038/s41598-017-12938-8) PubMed DOI PMC

Tartally A, Kelager A, Furst MA, Nash DR. 2016. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon. Peerj 4, e1865 (10.7717/peerj.1865) PubMed DOI PMC

Ugelvig LV, Vila R, Pierce NE, Nash DR. 2011. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris–Maculinea clade. Mol. Phylogenet. Evol. 61, 237–243. (10.1016/j.ympev.2011.05.016) PubMed DOI

Schönrogge K, et al. In preparation. A tale of two species: chemical similarities and differences between two forms of Maculinea alcon. Insect Conserv. Diversity.

Bolt D, Neumeyer R, Rey A, Sohni V. 2010. Kleiner Moorbläuling (Lepidoptera: Lycaenidae: Phengaris alcon) und Echte Knotenameisen (Hymenoptera: Formicidae: Myrmica) am Pfannenstiel (Kanton Zürich, Schweiz). Entomol. Helvet. 3, 27–48.

Gros P. 2002. Nachweis von Maculinea rebeli (HIRSCHKE, 1904) aus dem Bundesland Salzburg (Lepidoptera: Lycaenidae). Z. Arb. Gem. Öst. Ent 54, 13–23.

Tessier M. 2012. Inventaire de l'Azuré des mouillères Maculinea alcon (DENIS & SCHIFFERMÜLLER, 1775) (Lepidoptera Lycaenidae) en Ariège. I. Résultats préliminaires. Bull. Soc. Linn. Bordeaux 147, 129–139.

Hirschke H. 1905. Eine neue hochalpine Form der Lycaena alcon F. aus den steirischen Alpen. Jahres-Bericht des Wiener Entomol Vereines 15, 1–3.

Kudrna O, Fric ZF. 2013. On the identity and taxonomic status of Lycaena alcon rebeli HIRSCHKE, 1905 — a long story of confusion and ignorance resulting in the fabrication of a ‘ghost species’ (Lepidoptera: Lycaenidae). Nachrichten des Entomologischen Vereins Apollo 34, 117–124.

Tartally A, Koschuh A, Varga Z. 2014. The re-discovered Maculinea rebeli (Hirschke, 1904): host ant usage, parasitoid and initial food plant around the type locality with taxonomical aspects (Lepidoptera, Lycaenidae). ZooKeys 406, 25–40. (10.3897/zookeys.406.7124). PubMed DOI PMC

Sliwinska EB, Nowicki P, Nash DR, Witek M, Settele J, Woyciechowski M. 2006. Morphology of caterpillars and pupae of European Maculinea species (Lepidoptera: Lycaenidae) with an identification table. Entomol. Fennica 17, 351–358.

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph 20, 1983–1992. (10.1109/TVCG.2014.2346248) PubMed DOI PMC

Lex A, Gehlenborg N. 2014. Points of view: sets and intersections. Nat. Methods 11, 779 (10.1038/nmeth.3033) DOI

Conway J, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940. (10.1093/bioinformatics/btx364) PubMed DOI PMC

R Core Team. 2018. R: A language and environment for statistical computing, 3.5.1 edn Vienna, Austria: R Foundation for Statistical Computing.

Wardlaw JC, Elmes GW, Thomas JA. 1998. Techniques for studying Maculinea butterflies: II. Identification guide to Myrmica ants found on Maculinea sites in Europe. J. Insect Conserv. 2, 119–127. (10.1023/a:1009621522615) DOI

Seifert B. 1996. Ameisen: beobachten, bestimmen. Augsburg, Germany: Naturbuch Verlag.

Czechowski W, Radchenko A, Czechowska W. 2002. The ants (hymenoptera, formicidae) of Poland. Warszawa, Poland: Museum and Institute of Zoology PAS.

Radchenko AG, Elmes GW. 2010. Myrmica ants (Hymenoptera: Formicidae) of the Old World Warszawa, Poland: Natura optima dux Foundation.

Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ. 1998. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J. Insect Conserv. 2, 67–78. (10.1023/A:1009696823965) DOI

Fraser AM, Tregenza T, Wedell N, Elgar MA, Pierce NE. 2002. Oviposition tests of ant preference in a myrmecophilous butterfly. J. Evol. Biol. 15, 861–870. (10.1046/j.1420-9101.2002.00434.x) DOI

Pierce NE, Elgar MA. 1985. The influence of ants on host plant-selection by Jalmenus evagoras, a Myrmecophilous Lycaenid butterfly. Behav. Ecol. Sociobiol. 16, 209–222. (10.1007/Bf00310983) DOI

Atsatt PR. 1981. Ant-dependent food plant selection by the mistletoe butterfly Ogyris amaryllis (Lycaenidae). Oecologia 48, 60–63. (10.1007/BF00346988) PubMed DOI

Fürst MA, Nash DR. 2010. Host ant independent oviposition in the parasitic butterfly Maculinea alcon. Biol. Lett. 6, 174–176. (10.1098/rsbl.2009.0730) PubMed DOI PMC

van Dyck H, Talloen W, Feenstra V, Wynhoff I. 2000. Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? Proc. R. Soc. Lond. B 267, 861–866. (10.1098/rspb.2000.1082) PubMed DOI PMC

Musche M, Anton C, Worgan A, Settele J. 2006. No experimental evidence for host ant related oviposition in a parasitic butterfly. J. Insect Behav. 19, 631–643. (10.1007/s10905-006-9053-0) DOI

Patricelli D, Barbero F, La Morgia V, Casacci LP, Witek M, Balletto E, Bonelli S. 2011. To lay or not to lay: oviposition of Maculinea arion in relation to Myrmica ant presence and host plant phenology. Anim. Behav. 82, 791–799. (10.1016/j.anbehav.2011.07.011) DOI

Wynhoff I, Grutters M, van Langevelde F. 2008. Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species. Anim. Biol. 58, 371–388. (10.1163/157075608X383683) DOI

Patricelli D, et al. 2015. Plant defences against ants provide a pathway to social parasitism in butterflies. Proc. R. Soc. B 282, 20151111 (10.1098/rspb.2015.1111) PubMed DOI PMC

Van Dyck H, Regniers S. 2010. Egg spreading in the ant-parasitic butterfly, Maculinea alcon: from individual behaviour to egg distribution pattern. Anim. Behav. 80, 621–627. (10.1016/j.anbehav.2010.06.021) DOI

Nash DR, Andersen A. 2015. Maculinea sommerfugle og stikmyrer på danske heder - coevolution i tid og rum. Flora og Fauna 121, 133–141.

Soares PO, Crespi AL, Rodrigues MC, Arnaldo PS. 2012. The habitat vegetational structure and the success of the blue alcon, Maculinea alcon (Denis & Schiffermuller). Plant Biosystems 146, 1–6. (10.1080/11263504.2011.558671) DOI

Sielezniew M, Stankiewicz-Fiedurek AM. 2013. Behavioural evidence for a putative oviposition-deterring pheromone in the butterfly, Phengaris (Maculinea) teleius (Lepidoptera: Lycaenidae). Eur. J. Entomol. 110, 71–80. (10.14411/eje.2013.009) DOI

Chao A. 1984. Nonparametric-estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.

Oksanen J, et al. 2018. vegan: Community Ecology Package. R package version 2.5–2 https://CRAN.R-project.org/package=vegan.

Thomas JA, Schönrogge K, Elmes GW. 2005. Specializations and host associations of social parasites of ants. In Insect evolutionary ecology: proceedings of the royal entomological society's 22nd symposium (eds Fellowes MDE, Holloway GJ, Rolff J), pp. 479–518. London, UK: Royal Entomological Society.

Larsson J.2018. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 4.1.0. https://cran.r-project.org/package=eulerr .

Meirmans PG, Van Tienderen PH. 2004. GenoType and GenoDive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794. (10.1111/j.1471-8286.2004.00770.x) DOI

Tartally A, Nash DR, Lengyel S, Varga Z. 2008. Patterns of host ant use by sympatric populations of Maculinea alcon and M. ‘rebeli’ in the Carpathian Basin. Insect Soc. 55, 370–381. (10.1007/s00040-008-1015-4) DOI

Helmus MR, Bland TJ, Williams CK, Ives AR. 2007. Phylogenetic measures of biodiversity. Am. Nat. 169, E68–E83. (10.1086/511334) PubMed DOI

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. (10.1093/bioinformatics/btq166) PubMed DOI

Jansen G, Vepsäläinen K, Savolainen R. 2011. A phylogenetic test of the parasite–host associations between Maculinea butterflies (Lepidoptera: Lycaenidae) and Myrmica ants (Hymenoptera: Formicidae). Eur. J. Entomol. 108, 53–62. (10.14411/eje.2011.007) DOI

Ebsen JR, Boomsma JJ, Nash DR. Submitted. Phylogeography and cryptic speciation in the Myrmica scabrinodis (Nylander, 1846) species complex (Hymenoptera: Formicidae), and their conservation implications. Insect Conserv. Diver.

Jansen G, Savolainen R, Vepsalainen K. 2010. Phylogeny, divergence-time estimation, biogeography and social parasite–host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304. (10.1016/j.ympev.2010.01.029) PubMed DOI

Cushman JH, Lawton JH, Manly BF. 1993. Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95, 30–37. (10.1007/BF00649503) PubMed DOI

Witek M, Sliwinska EB, Skorka P, Nowicki P, Wantuch M, Vrabec V, Settele J, Woyciechowski M. 2008. Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in East-central Europe. Eur. J. Entomol. 105, 871–877. (10.14411/eje.2008.115) DOI

Sielezniew M, Bystrowski C, Deoniziak K, Da Costa JM. 2015. An unexpected record of Myrmica schencki EMERY, 1895 as a secondary host ant of the hygrophilous form of a small and isolated population of the Alcon Blue butterfly Phengaris (=Maculinea) alcon (DENIS et SCHIFFERMÜLLER, 1775) (Lepidoptera, Lycaenidae) in NE Poland. Pol. J. Entomol. 84, 49–59. (10.1515/pjen-2015-0005) DOI

Jutzeler D. 1988. Fund von Maculinea rebeli (Hirschke, 1904) im Glarnerland (Lepidoptera, Lycaenidae). Mitt Entomol. Gesell Basel 384, 124–125.

Jutzeler D. 1989. Maculinea rebeli (HIRSCHKE): Ein Raupenfund im Glarnerland (Lepidoptera: Lycaenidae). Mitt Entomol. Gesell Basel 39, 92–93.

Sielezniew M, Rutkowski R. 2012. Population isolation rather than ecological variation explains the genetic structure of endangered myrmecophilous butterfly Phengaris (=Maculinea) arion. J. Insect Conserv. 16, 39–50. (10.1007/s10841-011-9392-9) DOI

Sielezniew M, Dziekańska I, Stankiewicz-Fiedurek AM. 2010a. Multiple host-ant use by the predatory social parasite Phengaris (=Maculinea) arion (Lepidoptera, Lycaenidae). J. Insect Conserv. 14, 141–149. (10.1007/s10841-009-9235-0) DOI

Hochberg ME, Clarke RT, Elmes GW, Thomas JA. 1994. Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. J. Anim. Ecol. 63, 375–391. (10.2307/5555) DOI

Thomas JA, Elmes GW, Clarke RT, Kim KG, Munguira ML, Hochberg ME. 1997. Field evidence and model predictions of butterfly-mediated apparent competition between gentian plants and red ants. Acta Oecol. 18, 671–684. (10.1016/S1146-609x(97)80050-1) DOI

Ebsen JR, Nash DR, Boomsma JJ. 2005. Cryptic Myrmica species among the hosts of Maculinea butterflies. In Studies on the ecology and conservation of butterflies in Europe - Vol. 2: species ecology along a European gradient: Maculinea butterflies as a model (eds Settele J, Thomas J, Kühn E), p. 171 Sofia, Bulgaria: Pensoft.

de Assis RA, dos Santos Cecconello M, Casacci LP, Barbero F, de Assis LM, Venturino E, Bonelli S. 2018. A theory and a mathematical model for the evolution of single and multiple host behavior in a parasite-host system (Maculinea-Myrmica). Ecol. Complex 34, 178–187. (10.1016/j.ecocom.2017.11.007) DOI

Guillem RM, Drijfhout FP, Martin SJ. 2016. Species-specific cuticular hydrocarbon stability within European Myrmica ants. J. Chem. Ecol. 42, 1052–1062. (10.1007/s10886-016-0784-x) PubMed DOI PMC

Als TD, Nash DR, Boomsma JJ. 2002. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. 27, 403–414. (10.1046/j.1365-2311.2002.00427.x) DOI

van Wilgenburg E, Symonds MRE, Elgar MA. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol. 24, 1188–1198. (10.1111/j.1420-9101.2011.02248.x) PubMed DOI

Oldham NJ, Morgan ED, Agosti D, Wehner R. 1999. Species recognition from postpharyngeal gland contents of ants of the Cataglyphis bicolor group. J. Chem. Ecol. 25, 1383–1393. (10.1023/A:1020935011325) PubMed DOI

Beibl J, D'Ettorre P, Heinze J. 2007. Cuticular profiles and mating preference in a slave-making ant. Insect Soc. 54, 174–182. (10.1007/s00040-007-0929-6) DOI

Oppelt A, Spitzenpfeil N, Kroiss J, Heinze J. 2008. The significance of intercolonial variation of cuticular hydrocarbons for inbreeding avoidance in ant sexuals. Anim. Behav. 76, 1029–1034. (10.1016/j.anbehav.2008.05.020) DOI

Nowicki P, Vrabec V. 2011. Evidence for positive density-dependent emigration in butterfly metapopulations. Oecologia 167, 657–665. (10.1007/s00442-011-2025-x) PubMed DOI PMC

Bonelli S, Vrabec V, Witek M, Barbero F, Patricelli D, Nowicki P. 2013. Selection on dispersal in isolated butterfly metapopulations. Popul. Ecol. 55, 469–478. (10.1007/s10144-013-0377-2) DOI

Timuş N, Craioveanu C, Sitaru C, Rus A, Rákosy L. 2013. Differences in adult phenology, demography, mobility and distribution in two syntopic ecotypes of Maculinea alcon (cruciata vs. pneumonanthe) (Lepidoptera: Lycaenidae) from Transilvania (Romania). Entomol. Romanica 18, 21–30.

Kőrösi Á, Örvössy N, Batáry P, Kover S, Peregovits L. 2008. Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia 156, 455–464. (10.1007/s00442-008-0986-1) PubMed DOI

Sielezniew M, Patricelli D, Rutkowski R, Witek M, Bonelli S, Bus MM. 2015. Population genetics of the endangered obligatorily myrmecophilous butterfly Phengaris (=Maculinea) arion in two areas of its European range. Insect Conserv. Diver. 8, 505–516. (10.1111/icad.12129) DOI

Andersen A, Simcox DJ, Thomas JA, Nash DR. 2014. Assessing reintroduction schemes by comparing genetic diversity of reintroduced and source populations: a case study of the globally threatened large blue butterfly (Maculinea arion). Biol. Conserv. 175, 34–41. (10.1016/j.biocon.2014.04.009) DOI

Ugelvig LV, Andersen A, Boomsma JJ, Nash DR. 2012. Dispersal and gene flow in the rare, parasitic Large Blue butterfly Maculinea arion. Mol. Ecol. 21, 3224–3236. (10.1111/j.1365-294X.2012.05592.x) PubMed DOI

Vanden Broeck A, Maes D, Kelager A, Wynhoff I, WallisDeVries MF, Nash DR, Oostermeijer JGB, Van Dyck H, Mergeay J. 2017. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 209, 89–97. (10.1016/j.biocon.2017.02.001) DOI

Witek M, et al. 2013. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn Soc. 109, 699–709. (10.1111/bij.12074) DOI

Nuismer SL, Thompson JN. 2006. Coevolutionary alternation in antagonistic interactions. Evolution 60, 2207–2217. (10.1111/j.0014-3820.2006.tb01858.x) PubMed DOI

Feeney WE, Welbergen JA, Langmore NE. 2014. Advances in the study of coevolution between avian brood parasites and their hosts. Annu. Rev. Ecol. Evol. Syst. 45, 227–246. (10.1146/annurev-ecolsys-120213-091603) DOI

Moksnes A, Fossøy F, Røskaft E, Stokke BG. 2013. Reviewing 30 years of studies on the Common Cuckoo: accumulated knowledge and future perspectives. Chinese Birds 4, 3–14. (10.5122/cbirds.2013.0001) DOI

Soler JJ, Møller AP, Soler M. 1999. A comparative study of host selection in the European cuckoo Cuculus canorus. Oecologia 118, 265–276. (10.1007/s004420050727) PubMed DOI

Alvarez F. 2003. Parasitism rate by the common cuckoo Cuculus canorus increases with high density of host's breeding pairs. Ornis Fennica 80, 193–196.

Lindholm AK. 1999. Brood parasitism by the cuckoo on patchy reed warbler populations in Britain. J. Anim. Ecol. 68, 293–309. (10.1046/j.1365-2656.1999.00286.x) DOI

Stokke BG, et al. 2007. Host density predicts presence of cuckoo parasitism in reed warblers. Oikos 116, 913–922. (10.1111/j.2007.0030-1299.15832.x) DOI

Avilés JM, et al. 2011. The common cuckoo Cuculus canorus is not locally adapted to its reed warbler Acrocephalus scirpaceus host. J. Evol. Biol. 24, 314–325. (10.1111/j.1420-9101.2010.02168.x) PubMed DOI

Kleven O, Moksnes A, Røskaft E, Rudolfsen G, Stokke BG, Honza M. 2004. Breeding success of common cuckoos Cuculus canorus parasitising four sympatric species of Acrocephalus warblers. J. Avian Biol. 35, 394–398. (10.1111/j.0908-8857.2004.03359.x) DOI

Abernathy VE, Langmore NE. 2017. Factors affecting the rates of coevolution between obligate avian brood parasites and their hosts. In Avian brood parasitism: fascinating life sciences (ed. Soler M.), pp. 23–41. Cham, Switzerland: Springer International Publishing.

Gibbs HL, Sorenson MD, Marchetti K, Brooke MD, Davies NB, Nakamura H. 2000. Genetic evidence for female host-specific races of the common cuckoo. Nature 407, 183 (10.1038/35025058) PubMed DOI

Antonov A, Stokke BG, Vikan JR, Fossøy F, Ranke PS, Røskaft E, Moksnes A, Møller AP, Shykoff JA. 2010. Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes. J. Evol. Biol. 23, 1170–1182. (10.1111/j.1420-9101.2010.01982.x) PubMed DOI

Gadeberg RME, Boomsma JJ. 1997. Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. J. Insect Conserv. 1, 99–111. (10.1023/A:1018439211244) DOI

Pierce NE. 1995. Predatory and parasitic Lepidoptera: carnivores living on plants. J. Lepid Soc. 49, 412–453.

Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47, 733–771. (10.1146/annurev.ento.47.091201.145257) PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Ectoparasitic fungi of Myrmica ants alter the success of parasitic butterflies

. 2021 Dec 15 ; 11 (1) : 24031. [epub] 20211215

See more in PubMed

figshare
10.6084/m9.figshare.c.4351178

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...