On-Surface Synthesis of a Ferromagnetic Molecular Spin Trimer

. 2025 Jun 11 ; 147 (23) : 19530-19538. [epub] 20250530

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40444745

Triangulenes are prototypical examples of open-shell nanographenes. Their magnetic properties, arising from the presence of unpaired π electrons, can be extensively tuned by modifying their size and shape or by introducing heteroatoms. Different triangulene derivatives have been designed and synthesized in recent years thanks to the development of on-surface synthesis strategies. Triangulene-based nanostructures with polyradical character, hosting several interacting spin units, can be challenging to fabricate but are particularly interesting for potential applications in carbon-based spintronics. Here, we combine pristine and N-doped triangulenes into a more complex nanographene, TTAT, predicted to possess three unpaired π electrons delocalized along the zigzag periphery. We generate the molecule on a Au(111) surface and detect direct fingerprints of multiradical coupling and high-spin state using scanning tunneling microscopy and spectroscopy. With the support of theoretical calculations, we show that its three radical units are localized at distinct parts of the molecule and couple via symmetric ferromagnetic interactions, which result in a S = 3/2 ground state, thus demonstrating the realization of a molecular ferromagnetic Heisenberg spin trimer.

Zobrazit více v PubMed

Li J., Sanz S., Corso M., Choi D. J., Peña D., Frederiksen T., Pascual J. I.. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019;10:200. doi: 10.1038/s41467-018-08060-6. PubMed DOI PMC

Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R.. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15:22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI

Gaita-Ariño A., Luis F., Hill S., Coronado E.. Molecular Spins for Quantum Computation. Nat. Chem. 2019;11:301–309. doi: 10.1038/s41557-019-0232-y. PubMed DOI

Yazyev O. V.. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010;73:056501. doi: 10.1088/0034-4885/73/5/056501. DOI

de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34:443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI

Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119:4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Ovchinnikov A. A.. Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds: (Do Organic Ferromagnetics Exist?) Theor. Chim. Acta. 1978;47:297–304. doi: 10.1007/BF00549259. DOI

Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Turco E., Bernhardt A., Krane N., Valenta L., Fasel R., Juríček M., Ruffieux P.. Observation of the Magnetic Ground State of the Two Smallest Triangular Nanographenes. JACS Au. 2023;3:1358–1364. doi: 10.1021/jacsau.2c00666. PubMed DOI PMC

Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C. A., Müllen K., Fasel R., Feng X., Ruffieux P.. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141:10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI

Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z. Q., Qiu Z.. et al. Atomically Precise Bottom-up Synthesis of π-Extended [5]­Triangulene. Sci. Adv. 2019;5:eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC

Mishra S., Yao X., Chen Q., Eimre K., Gröning O., Ortiz R., Di Giovannantonio M., Sancho-García J. C., Fernández-Rossier J., Pignedoli C. A., Müllen K., Ruffieux P., Narita A., Fasel R.. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021;13:581–586. doi: 10.1038/s41557-021-00678-2. PubMed DOI

Wang T., Berdonces-Layunta A., Friedrich N., Vilas-Varela M., Calupitan J. P., Pascual J. I., Peña D., Casanova D., Corso M., de Oteyza D. G.. Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. J. Am. Chem. Soc. 2022;144:4522–4529. doi: 10.1021/jacs.1c12618. PubMed DOI PMC

Vilas-Varela M., Romero-Lara F., Vegliante A., Calupitan J. P., Martínez A., Meyer L., Uriarte-Amiano U., Friedrich N., Wang D., Schulz F.. et al. On-Surface Synthesis and Characterization of a High-Spin Aza-[5]-Triangulene. Angew. Chem., Int. Ed. 2023;62:e202307884. doi: 10.1002/anie.202307884. PubMed DOI

Lawrence J., He Y., Wei H., Su J., Song S., Wania Rodrigues A., Miravet D., Hawrylak P., Zhao J., Wu J., Lu J.. Topological Design and Synthesis of High-Spin Aza-Triangulenes without Jahn–Teller Distortions. ACS Nano. 2023;17:20237–20245. doi: 10.1021/acsnano.3c05974. PubMed DOI

Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C. A., Fasel R., Feng X., Ruffieux P.. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem., Int. Ed. 2020;59:12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC

Zheng Y., Li C., Xu C., Beyer D., Yue X., Zhao Y., Wang G., Guan D., Li Y., Zheng H.. et al. Designer spin order in diradical nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC

Hieulle J., Castro S., Friedrich N., Vegliante A., Lara F. R., Sanz S., Rey D., Corso M., Frederiksen T., Pascual J. I., Peña D.. On-Surface Synthesis and Collective Spin Excitations of a Triangulene-Based Nanostar. Angew. Chem., Int. Ed. 2021;60:25224–25229. doi: 10.1002/anie.202108301. PubMed DOI PMC

Cheng S., Xue Z., Li C., Liu Y., Xiang L., Ke Y., Yan K., Wang S., Yu P.. On-surface synthesis of triangulene trimers via dehydration reaction. Nat. Commun. 2022;13:1705. doi: 10.1038/s41467-022-29371-9. PubMed DOI PMC

Du Q., Su X., Liu Y., Jiang Y., Li C., Yan K., Ortiz R., Frederiksen T., Wang S., Yu P.. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat. Commun. 2023;14:4802. doi: 10.1038/s41467-023-40542-0. PubMed DOI PMC

Turco E., Wu F., Catarina G., Krane N., Ma J., Fasel R., Feng X., Ruffieux P.. Magnetic Excitations in Ferromagnetically Coupled Spin-1 Nanographenes. Angew. Chem., Int. Ed. 2024;63:e202412353. doi: 10.1002/anie.202412353. PubMed DOI PMC

Calupitan J. P., Berdonces-Layunta A., Aguilar-Galindo F., Vilas-Varela M., Peña D., Casanova D., Corso M., de Oteyza D. G., Wang T.. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. Nano Lett. 2023;23:9832–9840. doi: 10.1021/acs.nanolett.3c02586. PubMed DOI PMC

Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M.. et al. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16:938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI

Fajtlowicz S., John P. E., Sachs H.. On Maximum Matchings and Eigenvalues of Benzenoid Graphs. Croat. Chem. Acta. 2005;78:195.

Wang W. L., Yazyev O. V., Meng S., Kaxiras E.. Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices. Phys. Rev. Lett. 2009;102:157201. doi: 10.1103/PhysRevLett.102.157201. PubMed DOI

Ternes M.. Spin Excitations and Correlations in Scanning Tunneling Spectroscopy. New J. Phys. 2015;17:063016. doi: 10.1088/1367-2630/17/6/063016. DOI

de la Torre B., Švec M., Foti G., Krejčí O., Hapala P., Garcia-Lekue A., Frederiksen T., Zbořil R., Arnau A., Vázquez H., Jelínek P.. Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and its Relation to the AFM/STM Signal. Phys. Rev. Lett. 2017;119:166001. doi: 10.1103/PhysRevLett.119.166001. PubMed DOI

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Ortiz R., Fernández-Rossier J.. Probing local moments in nanographenes with electron tunneling spectroscopy. Prog. Surf. Sci. 2020;95:100595. doi: 10.1016/j.progsurf.2020.100595. DOI

Mishra S., Catarina G., Wu F., Ortiz R., Jacob D., Eimre K., Ma J., Pignedoli C. A., Feng X., Ruffieux P., Fernández-Rossier J., Fasel R.. Observation of fractional edge excitations in nanographene spin chains. Nature. 2021;598:287–292. doi: 10.1038/s41586-021-03842-3. PubMed DOI

Krane N., Turco E., Bernhardt A., Jacob D., Gandus G., Passerone D., Luisier M., Juríček M., Fasel R., Fernández-Rossier J., Ruffieux P.. Exchange Interactions and Intermolecular Hybridization in a Spin-1/2 Nanographene Dimer. Nano Lett. 2023;23:9353–9359. doi: 10.1021/acs.nanolett.3c02633. PubMed DOI

Sandoval-Salinas M. E., Carreras A., Casanova D.. Triangular Graphene Nanofragments: Open-Shell Character and Doping. Phys. Chem. Chem. Phys. 2019;21:9069–9076. doi: 10.1039/C9CP00641A. PubMed DOI

Ortiz J. V.. Dyson-Orbital Concepts for Description of Electrons in Molecules. J. Chem. Phys. 2020;153:070902. doi: 10.1063/5.0016472. PubMed DOI

Krejčí O., Hapala P., Ondráček M., Jelínek P.. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI

Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical model for multiorbital Kondo screening in strongly correlated molecules with several unpaired electrons. Phys. Rev. B. 2024;110:165113. doi: 10.1103/PhysRevB.110.165113. DOI

Jacob D., Fernández-Rossier J.. Theory of Intermolecular Exchange in Coupled Spin-1/2 Nanographenes. Phys. Rev. B. 2022;106:205405. doi: 10.1103/PhysRevB.106.205405. DOI

Mishra S., Fatayer S., Fernández S., Kaiser K., Peña D., Gross L.. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano. 2022;16:3264–3271. doi: 10.1021/acsnano.1c11157. PubMed DOI

Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI

Krylov A. I.. Triradicals. J. Phys. Chem. A. 2005;109:10638–10645. doi: 10.1021/jp0528212. PubMed DOI

Haraldsen J. T., Barnes T., Musfeldt J. L.. Neutron Scattering and Magnetic Observables for S = 1/2 Molecular Magnets. Phys. Rev. B. 2005;71:064403. doi: 10.1103/PhysRevB.71.064403. DOI

Zhang H., Pink M., Wang Y., Rajca S., Rajca A.. High-Spin S = 3/2 Ground-State Aminyl Triradicals: Toward High-Spin Oligo-Aza Nanographenes. J. Am. Chem. Soc. 2022;144:19576–19591. doi: 10.1021/jacs.2c09241. PubMed DOI PMC

Horcas I., Fernández R., Gómez-Rodríguez J. M., Colchero J., Gómez-Herrero J., Baro A. M.. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI

Ruby M.. SpectraFox: A free open-source data management and analysis tool for scanning probe microscopy and spectroscopy. SoftwareX. 2016;5:31–36. doi: 10.1016/j.softx.2016.04.001. DOI

Giessibl F. J.. High-Speed Force Sensor for Force Microscopy and Profilometry Utilizing a Quartz Tuning Fork. Appl. Phys. Lett. 1998;73:3956–3958. doi: 10.1063/1.122948. DOI

Albrecht T. R., Grütter P., Horne D., Rugar D.. Frequency Modulation Detection Using High- Q Cantilevers for Enhanced Force Microscope Sensitivity. J. Appl. Phys. 1991;69:668–673. doi: 10.1063/1.347347. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...