On-Surface Synthesis of a Ferromagnetic Molecular Spin Trimer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40444745
PubMed Central
PMC12164331
DOI
10.1021/jacs.4c15736
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Triangulenes are prototypical examples of open-shell nanographenes. Their magnetic properties, arising from the presence of unpaired π electrons, can be extensively tuned by modifying their size and shape or by introducing heteroatoms. Different triangulene derivatives have been designed and synthesized in recent years thanks to the development of on-surface synthesis strategies. Triangulene-based nanostructures with polyradical character, hosting several interacting spin units, can be challenging to fabricate but are particularly interesting for potential applications in carbon-based spintronics. Here, we combine pristine and N-doped triangulenes into a more complex nanographene, TTAT, predicted to possess three unpaired π electrons delocalized along the zigzag periphery. We generate the molecule on a Au(111) surface and detect direct fingerprints of multiradical coupling and high-spin state using scanning tunneling microscopy and spectroscopy. With the support of theoretical calculations, we show that its three radical units are localized at distinct parts of the molecule and couple via symmetric ferromagnetic interactions, which result in a S = 3/2 ground state, thus demonstrating the realization of a molecular ferromagnetic Heisenberg spin trimer.
CIC NanoGUNE BRTA Donostia San Sebastián 20018 Spain
Donostia International Physics Center Donostia San Sebastián 20018 Spain
Ikerbasque Basque Foundation for Science Bilbao 48013 Spain
Institute of Physics Czech Academy of Sciences Prague 16200 Czech Republic
Materials Physics Center Donostia San Sebastián E 20018 Spain
Oportunius Galician Innovation Agency Santiago de Compostela 15702 Spain
Theory of Condensed Matter Cavendish Laboratory University of Cambridge Cambridge CB3 0HE U K
Zobrazit více v PubMed
Li J., Sanz S., Corso M., Choi D. J., Peña D., Frederiksen T., Pascual J. I.. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019;10:200. doi: 10.1038/s41467-018-08060-6. PubMed DOI PMC
Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R.. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15:22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI
Gaita-Ariño A., Luis F., Hill S., Coronado E.. Molecular Spins for Quantum Computation. Nat. Chem. 2019;11:301–309. doi: 10.1038/s41557-019-0232-y. PubMed DOI
Yazyev O. V.. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010;73:056501. doi: 10.1088/0034-4885/73/5/056501. DOI
de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34:443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI
Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119:4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Ovchinnikov A. A.. Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds: (Do Organic Ferromagnetics Exist?) Theor. Chim. Acta. 1978;47:297–304. doi: 10.1007/BF00549259. DOI
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Turco E., Bernhardt A., Krane N., Valenta L., Fasel R., Juríček M., Ruffieux P.. Observation of the Magnetic Ground State of the Two Smallest Triangular Nanographenes. JACS Au. 2023;3:1358–1364. doi: 10.1021/jacsau.2c00666. PubMed DOI PMC
Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C. A., Müllen K., Fasel R., Feng X., Ruffieux P.. Synthesis and Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019;141:10621–10625. doi: 10.1021/jacs.9b05319. PubMed DOI
Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z. Q., Qiu Z.. et al. Atomically Precise Bottom-up Synthesis of π-Extended [5]Triangulene. Sci. Adv. 2019;5:eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC
Mishra S., Yao X., Chen Q., Eimre K., Gröning O., Ortiz R., Di Giovannantonio M., Sancho-García J. C., Fernández-Rossier J., Pignedoli C. A., Müllen K., Ruffieux P., Narita A., Fasel R.. Large Magnetic Exchange Coupling in Rhombus-Shaped Nanographenes with Zigzag Periphery. Nat. Chem. 2021;13:581–586. doi: 10.1038/s41557-021-00678-2. PubMed DOI
Wang T., Berdonces-Layunta A., Friedrich N., Vilas-Varela M., Calupitan J. P., Pascual J. I., Peña D., Casanova D., Corso M., de Oteyza D. G.. Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. J. Am. Chem. Soc. 2022;144:4522–4529. doi: 10.1021/jacs.1c12618. PubMed DOI PMC
Vilas-Varela M., Romero-Lara F., Vegliante A., Calupitan J. P., Martínez A., Meyer L., Uriarte-Amiano U., Friedrich N., Wang D., Schulz F.. et al. On-Surface Synthesis and Characterization of a High-Spin Aza-[5]-Triangulene. Angew. Chem., Int. Ed. 2023;62:e202307884. doi: 10.1002/anie.202307884. PubMed DOI
Lawrence J., He Y., Wei H., Su J., Song S., Wania Rodrigues A., Miravet D., Hawrylak P., Zhao J., Wu J., Lu J.. Topological Design and Synthesis of High-Spin Aza-Triangulenes without Jahn–Teller Distortions. ACS Nano. 2023;17:20237–20245. doi: 10.1021/acsnano.3c05974. PubMed DOI
Mishra S., Beyer D., Eimre K., Ortiz R., Fernández-Rossier J., Berger R., Gröning O., Pignedoli C. A., Fasel R., Feng X., Ruffieux P.. Collective All-Carbon Magnetism in Triangulene Dimers. Angew. Chem., Int. Ed. 2020;59:12041–12047. doi: 10.1002/anie.202002687. PubMed DOI PMC
Zheng Y., Li C., Xu C., Beyer D., Yue X., Zhao Y., Wang G., Guan D., Li Y., Zheng H.. et al. Designer spin order in diradical nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC
Hieulle J., Castro S., Friedrich N., Vegliante A., Lara F. R., Sanz S., Rey D., Corso M., Frederiksen T., Pascual J. I., Peña D.. On-Surface Synthesis and Collective Spin Excitations of a Triangulene-Based Nanostar. Angew. Chem., Int. Ed. 2021;60:25224–25229. doi: 10.1002/anie.202108301. PubMed DOI PMC
Cheng S., Xue Z., Li C., Liu Y., Xiang L., Ke Y., Yan K., Wang S., Yu P.. On-surface synthesis of triangulene trimers via dehydration reaction. Nat. Commun. 2022;13:1705. doi: 10.1038/s41467-022-29371-9. PubMed DOI PMC
Du Q., Su X., Liu Y., Jiang Y., Li C., Yan K., Ortiz R., Frederiksen T., Wang S., Yu P.. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat. Commun. 2023;14:4802. doi: 10.1038/s41467-023-40542-0. PubMed DOI PMC
Turco E., Wu F., Catarina G., Krane N., Ma J., Fasel R., Feng X., Ruffieux P.. Magnetic Excitations in Ferromagnetically Coupled Spin-1 Nanographenes. Angew. Chem., Int. Ed. 2024;63:e202412353. doi: 10.1002/anie.202412353. PubMed DOI PMC
Calupitan J. P., Berdonces-Layunta A., Aguilar-Galindo F., Vilas-Varela M., Peña D., Casanova D., Corso M., de Oteyza D. G., Wang T.. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. Nano Lett. 2023;23:9832–9840. doi: 10.1021/acs.nanolett.3c02586. PubMed DOI PMC
Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M.. et al. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16:938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI
Fajtlowicz S., John P. E., Sachs H.. On Maximum Matchings and Eigenvalues of Benzenoid Graphs. Croat. Chem. Acta. 2005;78:195.
Wang W. L., Yazyev O. V., Meng S., Kaxiras E.. Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices. Phys. Rev. Lett. 2009;102:157201. doi: 10.1103/PhysRevLett.102.157201. PubMed DOI
Ternes M.. Spin Excitations and Correlations in Scanning Tunneling Spectroscopy. New J. Phys. 2015;17:063016. doi: 10.1088/1367-2630/17/6/063016. DOI
de la Torre B., Švec M., Foti G., Krejčí O., Hapala P., Garcia-Lekue A., Frederiksen T., Zbořil R., Arnau A., Vázquez H., Jelínek P.. Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and its Relation to the AFM/STM Signal. Phys. Rev. Lett. 2017;119:166001. doi: 10.1103/PhysRevLett.119.166001. PubMed DOI
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Ortiz R., Fernández-Rossier J.. Probing local moments in nanographenes with electron tunneling spectroscopy. Prog. Surf. Sci. 2020;95:100595. doi: 10.1016/j.progsurf.2020.100595. DOI
Mishra S., Catarina G., Wu F., Ortiz R., Jacob D., Eimre K., Ma J., Pignedoli C. A., Feng X., Ruffieux P., Fernández-Rossier J., Fasel R.. Observation of fractional edge excitations in nanographene spin chains. Nature. 2021;598:287–292. doi: 10.1038/s41586-021-03842-3. PubMed DOI
Krane N., Turco E., Bernhardt A., Jacob D., Gandus G., Passerone D., Luisier M., Juríček M., Fasel R., Fernández-Rossier J., Ruffieux P.. Exchange Interactions and Intermolecular Hybridization in a Spin-1/2 Nanographene Dimer. Nano Lett. 2023;23:9353–9359. doi: 10.1021/acs.nanolett.3c02633. PubMed DOI
Sandoval-Salinas M. E., Carreras A., Casanova D.. Triangular Graphene Nanofragments: Open-Shell Character and Doping. Phys. Chem. Chem. Phys. 2019;21:9069–9076. doi: 10.1039/C9CP00641A. PubMed DOI
Ortiz J. V.. Dyson-Orbital Concepts for Description of Electrons in Molecules. J. Chem. Phys. 2020;153:070902. doi: 10.1063/5.0016472. PubMed DOI
Krejčí O., Hapala P., Ondráček M., Jelínek P.. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI
Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical model for multiorbital Kondo screening in strongly correlated molecules with several unpaired electrons. Phys. Rev. B. 2024;110:165113. doi: 10.1103/PhysRevB.110.165113. DOI
Jacob D., Fernández-Rossier J.. Theory of Intermolecular Exchange in Coupled Spin-1/2 Nanographenes. Phys. Rev. B. 2022;106:205405. doi: 10.1103/PhysRevB.106.205405. DOI
Mishra S., Fatayer S., Fernández S., Kaiser K., Peña D., Gross L.. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano. 2022;16:3264–3271. doi: 10.1021/acsnano.1c11157. PubMed DOI
Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI
Krylov A. I.. Triradicals. J. Phys. Chem. A. 2005;109:10638–10645. doi: 10.1021/jp0528212. PubMed DOI
Haraldsen J. T., Barnes T., Musfeldt J. L.. Neutron Scattering and Magnetic Observables for S = 1/2 Molecular Magnets. Phys. Rev. B. 2005;71:064403. doi: 10.1103/PhysRevB.71.064403. DOI
Zhang H., Pink M., Wang Y., Rajca S., Rajca A.. High-Spin S = 3/2 Ground-State Aminyl Triradicals: Toward High-Spin Oligo-Aza Nanographenes. J. Am. Chem. Soc. 2022;144:19576–19591. doi: 10.1021/jacs.2c09241. PubMed DOI PMC
Horcas I., Fernández R., Gómez-Rodríguez J. M., Colchero J., Gómez-Herrero J., Baro A. M.. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI
Ruby M.. SpectraFox: A free open-source data management and analysis tool for scanning probe microscopy and spectroscopy. SoftwareX. 2016;5:31–36. doi: 10.1016/j.softx.2016.04.001. DOI
Giessibl F. J.. High-Speed Force Sensor for Force Microscopy and Profilometry Utilizing a Quartz Tuning Fork. Appl. Phys. Lett. 1998;73:3956–3958. doi: 10.1063/1.122948. DOI
Albrecht T. R., Grütter P., Horne D., Rugar D.. Frequency Modulation Detection Using High- Q Cantilevers for Enhanced Force Microscope Sensitivity. J. Appl. Phys. 1991;69:668–673. doi: 10.1063/1.347347. DOI