Laser ablation synthesis of metal-doped gold clusters from composites of gold nanoparticles with metal organic frameworks
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA18-03823S
Grantová Agentura České Republiky
MUNI/A/1421/2019
Grantová agentura, Masarykova Univerzita, Czech Republic
MAT2017-89207-R
Spanish Ministry of Economy and competitiveness (MINECO)
PubMed
33633126
PubMed Central
PMC7907063
DOI
10.1038/s41598-021-83836-3
PII: 10.1038/s41598-021-83836-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metal-doped gold clusters, mainly cages, are receiving rapidly increasing attention due to their tunable catalytic properties. Their synthesis is mostly based on complex procedures, including several steps. In this work, via adsorption of gold nanoparticles (AuNPs) from aqueous solution to MOF (metal organic frameworks) of M = Co, Cu, Ni, and Zn with various linkers the {AuNPs, MOF} composites were prepared. These composites were used for laser ablation synthesis (LAS) using a common mass spectrometer. Several series of positively and negatively charged AumMn+/- clusters were observed in mass spectra and their stoichiometry (m = 1-35, n = 1-5) was determined. For each dopant (Co, Cu, Ni, and Zn) ~ 50 different clusters were identified in positive, as well as in negative ion modes. About 100 of these clusters were proposed to be endohedral metal-doped gold cages (for m > 12). The developed approach represents a simple procedure for generating metal-doped gold clusters or endohedral metal-doped gold cages materials with potential applications in medicine and/or electronics.
Zobrazit více v PubMed
Li X, Kiran B, Cui LF, Wang LS. Magnetic properties in transition-metal-doped gold clusters: M@Au 6 (M=Ti, V, Cr) Phys. Rev. Lett. 2005;95:1–4. PubMed
Wang L, et al. Magnetic doping of the golden cage cluster M@Au16− (M = Fe Co, Ni) Phys. Rev. B. 2009;79:1–4.
Tam NM, Cuong NT, Pham HT, Tung NT. Au19M (M=Cr, Mn, and Fe) as magnetic copies of the golden pyramid. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P. Element- and size-dependent electron delocalization in AuNX+ clusters (X = Sc, Ti, V, Cr, Mn, Fe Co, Ni) Phys. Rev. Lett. 2003;90:4. doi: 10.1103/PhysRevLett.90.033401. PubMed DOI
Pyykkö P, Runeberg N. Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule. Angew. Chemie Int. Ed. 2002;41:2174–2176. doi: 10.1002/1521-3773(20020617)41:12<2174::AID-ANIE2174>3.0.CO;2-8. PubMed DOI
Gao Y, et al. Structural and electronic properties of uranium-encapsulated Au14 cage. Sci. Rep. 2014;4:10–15. PubMed PMC
Negishi Y, Munakata K, Ohgake W, Nobusada K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012;3:2209–2214. doi: 10.1021/jz300892w. PubMed DOI
Woldeghebriel H. Structures, energetics and magnetic properties of AunSFem and AunFem clusters for m = 1–5 and n = 1–5, 12 and 32. Momona Ethiop. J. Sci. 2014;6:73–94. doi: 10.4314/mejs.v6i2.109711. DOI
Ghosh A, Mohammed OF, Bakr OM. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018;51:3094–3103. doi: 10.1021/acs.accounts.8b00412. PubMed DOI
Bulusu S, Li X, Wang L, Zeng XC. Evidence of hollow golden cages. Proc. Natl. Acad. Sci. USA. 2006;103:8326–8330. doi: 10.1073/pnas.0600637103. PubMed DOI PMC
Wu Y, et al. Experimental observation and confirmation of Icosahedral W@Au12 and Mo@Au12 Molecules. Angew. Chem. Int. Ed. 2002;41:4786–4789. doi: 10.1002/anie.200290048. PubMed DOI
Autschbach, J. et al. Properties of WAu12. Phys. Chem. Chem. Phys.6, 11–22 (2004).
Li HF, Wang HQ. Stabilization of golden cages by encapsulation of a single transition metal atom. R. Soc. Open Sci. 2018;5:1–13. PubMed PMC
Wang L, Bulusu S, Zhai H, Zeng X, Wang L. Doping golden buckyballs: Cu@Au16− and Cu@Au17− cluster anions. Angew. Chemie Int. Ed. 2007;46:2915–2918. doi: 10.1002/anie.200700060. PubMed DOI
Zhao J, Du Q, Zhou S, Kumar V. Endohedrally doped cage clusters. Chem. Rev. 2020;120:9021–9163. doi: 10.1021/acs.chemrev.9b00651. PubMed DOI
Wang LS, Cheng HS, Fan J. Photoelectron spectroscopy of size-selected transition metal clusters: Fen−, n=3–24. J. Chem. Phys. 1995;102:9480–9493. doi: 10.1063/1.468817. DOI
Heiz U, Vanolli F, Trento L, Schneider WD. Chemical reactivity of size-selected supported clusters: An experimental setup. Rev. Sci. Instrum. 1997;68:1986–1994. doi: 10.1063/1.1148113. DOI
Masubuchi T, et al. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics. Rev. Sci. Instrum. 2018;89:66. doi: 10.1063/1.5017588. PubMed DOI
Jiang H, et al. Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 2019;141:5481–5489. doi: 10.1021/jacs.9b00355. PubMed DOI
Hajiashrafi S, Motakef Kazemi N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon. 2019;5:68. doi: 10.1016/j.heliyon.2019.e02152. PubMed DOI PMC
Meek ST, Greathouse JA, Allendorf MD. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011;23:249–267. doi: 10.1002/adma.201002854. PubMed DOI
Rösler C, Fischer RA. Metal–organic frameworks as hosts for nanoparticles. Cryst. Eng. Comm. 2015;17:199–217. doi: 10.1039/C4CE01251H. DOI
Wang JS, et al. Au@Cu(II)-MOF: Highly efficient bifunctional heterogeneous catalyst for successive oxidation-condensation reactions. Inorg. Chem. 2016;55:6685–6691. doi: 10.1021/acs.inorgchem.6b00925. PubMed DOI
Keskin S, Seda K. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. 2011;50:1799–1812. doi: 10.1021/ie101312k. DOI
Pečinka L, Havel J. Nano-gold, iron(III)-1,3,5-benzene tricarboxylate metal organic framework (MOF) nano-composite as precursor for laser ablation generation of gold-iron AumFen+/− (m = 1–35, n = 1–5) clusters. Mass spectrometric study. Rapid Commun. Mass Spectrom. 2020;34:2. doi: 10.1002/rcm.8749. PubMed DOI
Gam F, Arratia-Pérez R, Kahlal S, Saillard JY, Muñoz-Castro A. Stabilizing heteroatom-centered 16-vertex group 11 tetrahedral architectures: Bonding and structural considerations toward versatile endohedral species. Int. J. Quantum Chem. 2019;24:1–8.
Herlert A, Krückeberg S, Schweikhard L, Vogel M, Walther C. Electron impact ionization/dissociation of size selected gold cluster cations. J. Electron Spectros. Relat. Phenomena. 2000;106:179–186. doi: 10.1016/S0368-2048(99)00075-4. DOI
Yaghi OM, Li H, Groy TL. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. J. Am. Chem. Soc. 1996;118:9096–9101. doi: 10.1021/ja960746q. DOI
Kolářová L, Kučera L, Vaňhara P, Hampl A, Havel J. Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2015;29:1585–1595. doi: 10.1002/rcm.7265. PubMed DOI