Polycyclic aromatic hydrocarbons and their metabolites in bronchoalveolar lavage and urine samples from patients with inhalation injury throughout their hospitalization: A prospective pilot study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39088550
PubMed Central
PMC11293749
DOI
10.1371/journal.pone.0308163
PII: PONE-D-24-10533
Knihovny.cz E-zdroje
- MeSH
- bronchoalveolární lavážní tekutina * chemie MeSH
- dospělí MeSH
- hospitalizace * MeSH
- lidé středního věku MeSH
- lidé MeSH
- pilotní projekty MeSH
- polycyklické aromatické uhlovodíky * moč analýza MeSH
- prospektivní studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polycyklické aromatické uhlovodíky * MeSH
BACKGROUND: Specific toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs) and their metabolites, may affect the inhalation injury (INHI) grade, patients' status, and prognosis for recovery. This pilot prospective study aimed to: i) evaluate the suitability of bronchoalveolar lavage (BAL) for determination of PAHs in the LRT and of urine for determination of hydroxylated metabolites (OH-PAHs) in patients with INHI, ii) describe the dynamic changes in the levels of these toxic compounds, and iii) correlate these findings with clinical variables of the patients with INHI. METHODS: The BAL and urine samples from 10 patients with INHI were obtained on Days 1, 3, 5, 7, and 14 of hospitalization, if possible, and PAHs (BAL) and OH-PAHs (urine) were analyzed using chromatographic methods (GC-MS and HPLC). RESULTS: Concentrations of analyzed PAHs were in most cases and time points below the limit of quantification in BAL samples. Nine OH-PAHs were detected in the urine samples; however, their concentrations sharply decreased within the first three days of the hospitalization. On Day 14, the total amount of OH-PAHs in urine was higher in surviving patients with High-grade INHI (≥3) than in those with Low-grade INHI (<3, p = 0.032). Finally, a significant correlation between certain OH-PAHs and clinical variables (AST/ALT, TBSA, ABSI) from Day 1 of the hospitalization was observed (p<0.05). CONCLUSIONS: BAL samples are not suitable for the analysis of PAHs. However, the OH-PAHs levels in urine can be measured reliably and were correlated with several clinical variables. Moreover, High-grade INHI was associated with higher total concentrations of OH-PAHs in urine.
Department of Burns and Plastic Surgery University Hospital Brno Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Lipový B, Řihová H, Kaloudová Y, Jonášek M, Suchánek I, Gregorová N, et al.. Inhalační trauma—historie, současnost a budoucnost. Otorinolaryngol Foniatr. 2011;51–7.
Wolter TP, Fuchs PC, Witzel C, Pallua N. Fumes in industrial fires can make inhalation injury more severe—a report of three cases of industrial burn accidents. Burns. 2005;31:925–9. doi: 10.1016/j.burns.2005.02.007 PubMed DOI
Foncerrada G, Culnan DM, Capek KD, González-Trejo S, Cambiaso-Daniel J, Woodson LC, et al.. Inhalation Injury in the Burned Patient. Ann Plast Surg. 2018;80:S98–105. doi: 10.1097/SAP.0000000000001377 PubMed DOI PMC
Dries DJ, Endorf FW. Inhalation injury: epidemiology, pathology, treatment strategies. Scand J Trauma Resusc Emerg Med. 2013;21:31. doi: 10.1186/1757-7241-21-31 PubMed DOI PMC
Albright JM, Davis CS, Bird MD, Ramirez L, Kim H, Burnham EL, et al.. The acute pulmonary inflammatory response to the graded severity of smoke inhalation injury. Crit Care Med. 2012;40:1113–21. doi: 10.1097/CCM.0b013e3182374a67 PubMed DOI PMC
Galeiras R. Smoke inhalation injury: a narrative review. Mediastinum. 2021;5:16–16. doi: 10.21037/med-21-7 PubMed DOI PMC
Charles WN, Collins D, Mandalia S, Matwala K, Dutt A, Tatlock J, et al.. Impact of inhalation injury on outcomes in critically ill burns patients: 12-year experience at a regional burns centre. Burns. 2022;48:1386–95. doi: 10.1016/j.burns.2021.11.018 PubMed DOI
Enkhbaatar P, Traber DL. Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci. 107(2):137–43. PubMed
Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, et al.. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19:351. doi: 10.1186/s13054-015-1077-4 PubMed DOI PMC
Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med. 3(3):283–97. doi: 10.1586/ERS.09.21 PubMed DOI PMC
Dyamenahalli K, Garg G, Shupp JW, Kuprys PV, Choudhry MA, Kovacs EJ. Inhalation Injury: Unmet Clinical Needs and Future Research. J Burn Care Res. 40(5):570–84. doi: 10.1093/jbcr/irz055 PubMed DOI PMC
Piatkowski A, Ulrich D, Grieb G, Pallua N. A new tool for the early diagnosis of carbon monoxide intoxication. Inhal Toxicol. 2009;21:1144–7. doi: 10.3109/08958370902839754 PubMed DOI
Ortiz-Pujols S, Jones SW, Short KA, Morrell MR, Bermudez CA, Tilley SL, et al.. Management and Sequelae of a 41-Year-Old Jehovah’s Witness With Severe Anhydrous Ammonia Inhalation Injury. J Burn Care Res. 2014;35:e180–3. doi: 10.1097/BCR.0b013e318299d4d7 PubMed DOI
Tsonis L, Hantsch-Bardsley C, Gamelli RL. Hydrofluoric Acid Inhalation Injury. J Burn Care Res. 2008;29:852–5. doi: 10.1097/BCR.0b013e3181848b7a PubMed DOI
Pu Q, Qian J, Tao W, Yang A, Wu J, Wang Y. Extracorporeal membrane oxygenation combined with continuous renal replacement therapy in cutaneous burn and inhalation injury caused by hydrofluoric acid and nitric acid. Medicine (Baltimore). 2017;96:e8972. doi: 10.1097/MD.0000000000008972 PubMed DOI PMC
Saeed O, Boyer NL, Pamplin JC, Driscoll IR, DellaVolpe J, Cannon J, et al.. Inhalation Injury and Toxic Industrial Chemical Exposure. Mil Med. 2018;183:130–2. doi: 10.1093/milmed/usy073 PubMed DOI
Stefanidou M, Athanaselis S, Spiliopoulou C. Health Impacts of Fire Smoke Inhalation. Inhal Toxicol. 2008;20:761–6. doi: 10.1080/08958370801975311 PubMed DOI
Quinete N, Esser A, Kraus T, Schettgen T. Determination of hydroxylated polychlorinated biphenyls (OH-PCBs) in human urine in a highly occupationally exposed German cohort: New prospects for urinary biomarkers of PCB exposure. Environ Int. 2016;97:171–9. doi: 10.1016/j.envint.2016.08.028 PubMed DOI
Miller K, Chang A. Acute inhalation injury. Emerg Med Clin North Am. 2003;21:533–57. doi: 10.1016/s0733-8627(03)00011-7 PubMed DOI
Tobiasen J, Hiebert JM, Edlich RF. The abbreviated burn severity index. Ann Emerg Med. 1982;11:260–2. doi: 10.1016/s0196-0644(82)80096-6 PubMed DOI
Centers for Disease Control and Prevention. Laboratory Procedure Manual: Eight monohydroxy polycyclic aromatic hydrocarbons: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2 hydroxyfluorene, 3-hydroxyfluorene, 1-hydroxyphenanthrene, 2- & 3-hydroxyphenanthrene, 1 hydroxypyrene. https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/PAH_H_MET_Aromatic_Hydrocarbons.pdf (8 January 2024, date last accessed)
Wang Y, Meng L, Pittman EN, Etheredge A, Hubbard K, Trinidad DA, et al.. Quantification of urinary mono-hydroxylated metabolites of polycyclic aromatic hydrocarbons by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409: 931–937. doi: 10.1007/s00216-016-9933-x PubMed DOI PMC
Esteban López M, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, et al.. The European human biomonitoring platform—Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int J Hyg Environ Health. 2021;234: 113740. doi: 10.1016/j.ijheh.2021.113740 PubMed DOI
Nübler S, Schäfer M, Haji-Abbas-Zarrabi K, Marković S, Marković K, Esteban López M, et al.. Interlaboratory Comparison Investigations (ICIs) for human biomonitoring of chromium as part of the quality assurance programme under HBM4EU. J Trace Elem Med Biol. 2022;70: 126912. doi: 10.1016/j.jtemb.2021.126912 PubMed DOI
Wise SA, Sander LC, Schantz MM. Analytical Methods for Determination of Polycyclic Aromatic Hydrocarbons (PAHs)—A Historical Perspective on the 16 U.S. EPA Priority Pollutant PAHs. Polycycl Aromat Compd. 2015;35:187–247.
Che C, Li J, Dong F, Zhang C, Liu L, Sun X, et al.. Seasonal characteristic composition of inorganic elements and polycyclic aromatic hydrocarbons in atmospheric fine particulate matter and bronchoalveolar lavage fluid of COPD patients in Northeast China. Respir Med. 2020;171:106082. doi: 10.1016/j.rmed.2020.106082 PubMed DOI
Löllgen H, Leyk D. Inhalation Injury of Lung and Heart After Inhalation of Toxic Substances. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M, editors. Pedestr Evacuation Dyn 2008. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 781–9.
Whitsett JA. Airway Epithelial Differentiation and Mucociliary Clearance. Ann Am Thorac Soc. 2018;15:S143–8. doi: 10.1513/AnnalsATS.201802-128AW PubMed DOI PMC
Fahy JV, Dickey BF. Airway Mucus Function and Dysfunction. N Engl J Med [Internet]. 2010. [cited 2023 Aug 25];363:2233–47. doi: 10.1056/NEJMra0910061 PubMed DOI PMC
Bronchiectasis Toolbox. Airway clearance in the normal lung. https://bronchiectasis.com.au/physiotherapy/principles-of-airway-clearance/airway-clearance-in-the-normal-lung (8 January 2024, date last accessed)
Fereratie Medisch Specialisten. Guidline: Nasal Mucociliary Clearance. https://richtlijnendatabase.nl/gerelateerde_documenten/f/17263/Nasal%20Mucociliary%20Clearance.pdf (8 January 2024, date last accessed)
Jiao J, Zhang L. Nasal Mucociliary Clearance. In: Zhang L, Bachert C, editors. Chronic Rhinosinusitis Mucosal Concept. Singapore: Springer Nature; 2022. p. 89–96.
Wen L, Ben X, Yang Z, Wu Y, Tan Y, Chen Q, et al.. Association between co-exposure of polycyclic aromatic hydrocarbons and chronic obstructive pulmonary disease among the US adults: results from the 2013–2016 National Health and Nutrition Examination Survey. Environ Sci Pollut Res. 2023;30:62981–92. doi: 10.1007/s11356-023-26413-7 PubMed DOI
Usmani A, Pipal DK, Bagla H, Verma V, Kumar P, Yadav S, et al.. Prediction of Mortality in Acute Thermal Burn Patients Using the Abbreviated Burn Severity Index Score: A Single-Center Experience. Cureus. 2022;14:e26161. doi: 10.7759/cureus.26161 PubMed DOI PMC
Wang LCH. Time patterns and metabolic rates of natural torpor in the Richardson’s ground squirrel. Can J Zool. 1979;57:149–55.