{Nano-gold, iron(III)-1,3,5-benzene tricarboxylate metal organic framework (MOF)} nano-composite as precursor for laser ablation generation of gold-iron Aum Fen +/- (m = 1-35, n = 1-5) clusters. Mass spectrometric study

. 2020 Jun 15 ; 34 (11) : e8749.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32048363

Grantová podpora
MUNI/A/1421/2019 Analytical and physico-chemical methods in investigation of geological, biological and synthetic materials
GA18-03823S Grantová Agentura České Republiky (Czech Science Foundation)

RATIONALE: Gold-iron bimetallic materials have applications in many fields, especially in nanotechnology and biomedicine. The chemistry of iron-doped gold clusters is still not fully understood but opens up the possibility of developing new materials, e.g. of gold cages doped with iron atoms. There have been several theoretical studies on these clusters but only a few experimental studies. METHODS: Laser desorption ionisation (LDI) was used for the generation of Au-Fe bimetallic clusters via laser ablation (337 nm nitrogen laser) of the synthesised nano-composite {nano-gold; Fe(III) 1,3,5-benzene tricarboxylate}, i.e. {AuNPs, Fe-MOF}, while a quadrupole ion trap time-of-flight mass spectrometer, equipped with a reflectron, was used to acquire mass spectra. RESULTS: A {AuNPs, Fe-MOF} nano-composite was prepared and found suitable for the LDI generation of Aum Fen clusters. In addition to Aum +/- (m = 1-35) clusters, a series of positively and negatively charged gold-iron Aum Fen +/- clusters were generated. The mass spectra exhibited evidence for the clusters containing up to five iron atoms. In total, 113 binary Aum Fen +/- clusters (m = 1-35, n = 1-5) were identified in the gas phase. CONCLUSIONS: A synthesised {AuNPs, iron(III)-1,3,5-benzene tricarboxylate MOF} nano-composite was found suitable for the generation of many new gold-iron clusters and mass spectrometry was shown to be an efficient technique for the determination of the cluster stoichiometry. A broad series of over 100 bimetallic Aum Fen clusters, some of them suggested to be gold cages doped with iron atoms (for m = 12 and higher), not only demonstrate a rich and complex chemistry, but also open wide possibilities of biomedical applications.

Zobrazit více v PubMed

Dhakshinamoorthy A, Alvaro M, Horcajada P, et al. Comparison of porous iron trimesates Basolite F300 and MIL-100(Fe) as heterogeneous catalysts for Lewis acid and oxidation reactions: Roles of structural defects and stability. ACS Catal. 2012;2(10):2060-2065.

Keskin S, Seda K. Biomedical applications of metal organic frameworks. Ind Eng Chem Res. 2011;50(4):1799-1812.

Rösler C, Fischer RA. Metal-organic frameworks as hosts for nanoparticles. CrystEngComm. 2014;17(2):199-217.

Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe (BTC). J Membr Sci. 2014;459:33-44.

Zhu SJ, Qiu L. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance†. Chem Commun. 2013;49(13):1267-1269.

Liao J, Wang D, Liu A, Hu Y, Li G. Controlled stepwise-synthesis of core-shell Au@MIL-100(Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection†. Analyst. 2015;140(24):8165-8171.

Evans JD, Sumby CJ, Doonan CJ. Post-synthetic metalation of metal-organic frameworks. Chem Soc Rev. 2014;43(16):5933-5951.

Zhu Q, Xu Q. Metal-organic framework composites. Chem Soc Rev. 2014;43(16):5468-5512.

Panyala NR, Peña-Méndez EM, Havel J. Gold and nano-gold in medicine: Overview, toxicology and perspectives. J Appl Biomed. 2009;7(2):75-91.

Wang W, Chen Q, Jiang C, et al. One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp. 2007;301(1-3):73-79.

De HS, Krishnamurty S, Mishra D, et al. Finite temperature behavior of gas phase neutral Aun (3 ≤ n ≤ 10) clusters: A first principles investigation. J Phys Chem C. 2011;115(35):17278-17285.

Olson RM, Varganov S, Gordon MS, et al. Where does the planar-to-nonplanar turnover occur in small gold clusters? J Am Chem Soc. 2005;127(3):1049-1052.

Spivey K, Williams JI, Wang L. Structures of undecagold clusters: Ligand effect. Chem Phys Lett. 2006;432(1-3):163-166.

Gruber M, Heimel G, Romaner L, et al. First-principles study of the geometric and electronic structure of Au13 clusters: Importance of the prism motif. Phys Rev B. 2008;77(16):1-7.

Gao Y, Shao N, Pei Y, Chen Z, Zeng XC. Catalytic activities of subnanometer gold clusters (Au16 - Au18, Au20, and Au27 - Au35) for CO oxidation. ACS Nano. 2011;5(10):7818-7829.

Bulusu S, Zeng XC. Structures and relative stability of neutral gold clusters: Aun (n = 15-19). J Chem Phys. 2013;125(15):1-5.

Wang L, Bai J, Lechtken A, et al. Magnetic doping of the golden cage cluster M@Au16− (M = Fe, Co, Ni). Phys Rev B. 2009;79(3):1-4.

Bulusu S, Li X, Wang L, et al. Evidence of hollow golden cages. Proc Natl Acad Sci. 2006;103(22):8326-8330.

Li J, Li X, Zhai H-J, Wang LS. Au20: A tetrahedral cluster. Science. 2003;299(5608):864-868.

Johansson MP, Sundholm D, Vaara J. Au32: A 24-carat golden fullerene. Angew Chem Int Ed. 2004;43(20):2678-2681.

Gilb S, Weis P, Furche F, et al. Structures of small gold cluster cations (Aun+, n <14): Ion mobility measurements versus density functional calculations. J Chem Phys. 2006;116(10):4094-4101.

Furche F, Ahlrichs R, Weis P, et al. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J Chem Phys. 2002;117(15):6982-6990.

Yan L, Cheng L, Yang J. Tetrahedral Au17+: A superatomic molecule with a Au13 FCC core. J Phys Chem C. 2015;119(40):14-18.

Ehlert C, Hamilton IP. Iron doped gold cluster nanomagnets: Ab initio determination of barriers for demagnetization. Nanoscale Adv. 2019;1:1553-1559.

Wang L, Bulusu S, Zhai H, et al. Doping golden buckyballs: Cu@Au16− and Cu@Au17− cluster anions. Angew Chem Int Ed. 2007;46(16):2915-2918.

Tam NM, Cuong NT, Pham HT, et al. Au19M (M = Cr, Mn, and Fe) as magnetic copies of the golden pyramid. Sci Rep. 2017;7(1):1-7.

Zhai HJ, Li J, Wang LS. Icosahedral gold cage clusters: M@Au12− (M = V, Nb, and Ta). J Chem Phys. 2004;121(17):8369-8374.

Woldeghebriel H. Structures, energetics and magnetic properties of AunSFem and AunFem clusters for m = 1-5 and n = 1-5, 12 and 32. Momona Ethiop J Sci. 2014;6(2):73-94.

Chen M, Yamamuro S, Farrell D, et al. Gold-coated iron nanoparticles for biomedical applications. J Appl Phys. 2003;93(10):7551-7553.

Cho SJ, Jarrett BR, Louie AY, et al. Gold-coated iron nanoparticles: A novel magnetic resonance agent for T1 and T2 weighted imaging. Nanotechnology. 2006;17(3):640-644.

Prokeš L, Peña-Méndez EM, Conde JE, Panyala NR, Alberti M, Havel J. Laser ablation synthesis of new gold arsenides using nano-gold and arsenic as precursors. Laser desorption ionisation time-of-flight mass spectrometry and spectrophotometry. Rapid Commun Mass Spectrom. 2014;28(6):577-586.

Gibson JK, Andrews L, Gagliardi L. Thorium and uranium carbide cluster cations in the gas phase: Similarities and differences between thorium and uranium. Inorg Chem. 2013;52(19):10968-10975.

Mawale RM, Ausekar MV, Pavliňák D, Galmiz O, Kubáček P, Havel J. Laser desorption ionization quadrupole ion trap time-of-flight mass spectrometry of AumFen+/− clusters generated from gold-iron nanoparticles and their giant nanoflowers. Electrochemical and/or plasma assisted synthesis. J Am Soc Mass Spectrom. 2016;28(2):215-223.

Zhang J, Post M, Veres T, et al. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J Phys Chem B. 2006;110(14):7122-7128.

Kolářová L, Prokeš L, Kučera L, et al. Clusters of monoisotopic elements for calibration in (TOF) mass spectrometry. J Am Soc Mass Spectrom. 2017;28(3):419-427.

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform journal. J Cheminform. 2012;4(1):17.

Lundberg L, Martini P, Goulart M, Gatchell M, Bohme DK, Scheier P. Hydrogenated gold clusters from helium nanodroplets: Cluster ionization and affinities for protons and hydrogen molecules. J Am Soc Mass Spectrom. 2019;30(10):1906-1913.

Li HF, Wang HQ. Stabilization of golden cages by encapsulation of a single transition metal atom. R Soc Open Sci. 2018;5(1):1-13.

Hermanek M, Zboril R, Mashlan M, et al. Thermal behaviour of iron(II) oxalate dihydrate in the atmosphere of its conversion gases. J Mater Chem. 2006;16(13):1273-1280.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...