Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00483S
Grantová Agentura České Republiky
FSI-S-20-6443
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34062752
PubMed Central
PMC8167604
DOI
10.3390/jfb12020029
PII: jfb12020029
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, bio-tribology, film formation, synovial fluid, tribo-chemistry,
- Publikační typ
- časopisecké články MeSH
To understand the possible lubricant mechanism in ceramic-on-ceramic hip joint prostheses, biochemical reactions of the synovial fluid and the corresponding frictional coefficients were studied. The experiments were performed in a hip joint simulator using the ball-on-cup configuration with balls and cups made from two types of ceramics, BIOLOX®forte and BIOLOX®delta. Different lubricants, namely albumin, γ-globulin, hyaluronic acid and three model synovial fluids, were studied in the experiments and Raman spectroscopy was used to analyze the biochemical responses of these lubricants at the interface. BIOLOX®delta surface was found less reactive to proteins and model fluid lubricants. In contrast, BIOLOX®forte ball surface has shown chemisorption with both proteins, hyaluronic acid and model fluids imitating total joint replacement and osteoarthritic joint. There was no direct correlation between the measured frictional coefficient and the observed chemical reactions. In summary, the study reveals chemistry of lubricant film formation on ceramic hip implant surfaces with various model synovial fluids and their components.
Zobrazit více v PubMed
Čípek P., Vrbka M., Rebenda D., Nečas D., Křupka I. Biotribology of Synovial Cartilage: A New Method for Visualization of Lubricating Film and Simultaneous Measurement of the Friction Coefficient. Materials. 2020;13:2075. doi: 10.3390/ma13092075. PubMed DOI PMC
Kerns J.G., Gikas P.D., Buckley K., Shepperd A., Birch H.L., McCarthy I., Miles J., Briggs T.W., Keen R., Parker A.W., et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol. 2014;66:1237–1246. doi: 10.1002/art.38360. PubMed DOI PMC
Navarro M., Michiardi A., Castano O., Planell J.A. Biomaterials in orthopaedics. J. R. Soc. Interface. 2008;5:1137–1158. doi: 10.1098/rsif.2008.0151. PubMed DOI PMC
Holzwarth U., Cotogno G. Total Hip Arthroplasty. European Commission; Brussels, Belgium: 2012.
Gallo J., Goodman S.B., Konttinen Y.T., Raska M. Particle disease: Biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19:213–224. doi: 10.1177/1753425912451779. PubMed DOI PMC
Bedard N.A., Callaghan J.J., Stefl M.D., Liu S.S. Systematic review of literature of cemented femoral components: What is the durability at minimum 20 years followup? Clin. Orthop. Relat. Res. 2015;473:563–571. doi: 10.1007/s11999-014-3876-3. PubMed DOI PMC
Thyssen J.P., Jakobsen S.S., Engkilde K., Johansen J.D., Søballe K., Menné T. The association between metal allergy, total hip arthroplasty, and revision: A case-control study. Acta Orthop. 2009;80:646–652. doi: 10.3109/17453670903487008. PubMed DOI PMC
Taddei P., Modena E., Traina F., Affatato S. Raman and fluorescence investigations on retrieved Biolox® delta femoral heads. J. Raman Spectrosc. 2012;43:1868–1876. doi: 10.1002/jrs.4105. DOI
Gregori G., Burger W., Sergo V. Piezo-spectroscopic analysis of the residual stresses in zirconia-toughened alumina ceramics: The influence of the tetragonal-to-monoclinic transformation. Mater. Sci. Eng. A. 1999;271:401–406. doi: 10.1016/S0921-5093(99)00383-4. DOI
Parkes M., Sayer K., Goldhofer M., Cann P., Walter W.L., Jeffers J. Zirconia phase transformation in retrieved, wear simulated, and artificially aged ceramic femoral heads. J. Orthop. Res. 2017;35:2781–2789. doi: 10.1002/jor.23589. PubMed DOI PMC
Tateiwa T., Marin E., Rondinella A., Ciniglio M., Zhu W., Affatato S., Pezzotti G., Bock R.M., McEntire B.J., Bal B.S., et al. Burst Strength of BIOLOX® delta Femoral Heads and Its Dependence on Low-Temperature Environmental Degradation. Materials. 2020;13:350. doi: 10.3390/ma13020350. PubMed DOI PMC
Affatato S., Modena E., Toni A., Taddei P. Retrieval analysis of three generations of Biolox® femoral heads: Spectroscopic and SEM characterization. J. Mech. Behav. Biomed. Mater. 2012;13:118–128. doi: 10.1016/j.jmbbm.2012.04.003. PubMed DOI
Taddei P., Pavoni E., Affatato S. Raman and Photoemission Spectroscopic Analyses of Explanted Biolox® Delta Femoral Heads Showing Metal Transfer. Materials. 2017;10:744. doi: 10.3390/ma10070744. PubMed DOI PMC
Nečas D., Vrbka M., Rebenda D., Gallo J., Galandáková A., Wolfová L., Křupka I., Hartl M. In situ observation of lubricant film formation in THR considering real conformity: The effect of model synovial fluid composition. Tribol. Int. 2018;117:206–216. doi: 10.1016/j.triboint.2017.09.001. PubMed DOI
Blewis M.E., Nugent-Derfus G.E., Schmidt T.A., Schumacher B.L., Sah R.L. A model of synovial fluid lubricant composition in normal and injured joints. Eur. Cell Mater. 2007;13:26–39. doi: 10.22203/eCM.v013a03. PubMed DOI
Nakashima K., Sawae Y., Murakami T. Effect of conformational changes and differences of proteins on frictional properties of poly (vinyl alcohol) hydrogel. Tribol. Int. 2007;40:1423–1427. doi: 10.1016/j.triboint.2007.02.010. DOI
Ghosh P., Guidolin D. Seminars in Arthritis and Rheumatism. Volume 32. WB Saunders; St. Louis, MO, USA: 2002. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: Are the effects molecular weight dependent? pp. 10–37. PubMed DOI
Rydell N., Balazs E.A. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of osteoarthritis and on granulation tissue formation. Clin. Orthop. Relat. Res. 1971;80:25–32. doi: 10.1097/00003086-197110000-00006. PubMed DOI
Kogan G., Šoltés L., Stern R., Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007;29:17–25. doi: 10.1007/s10529-006-9219-z. PubMed DOI
Ghosh S., Choudhury D., Das N.S., Pingguan-Murphy B. Tribological role of synovial fluid compositions on artificial joints—A systematic review of the last 10 years. Lubr. Sci. 2014;26:387–410. doi: 10.1002/ls.1266. DOI
Rebenda D., Vrbka M., Čípek P., Toropitsyn E., Nečas D., Pravda M., Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. Materials. 2020;13:2659. doi: 10.3390/ma13112659. PubMed DOI PMC
Jegina S., Salaka L., Kukle S., Livkisa D., Gravitis J. IOP Conference Series: Materials Science and Engineering. Volume 500. IOP Publishing; Bristol, UK: 2019. A preliminary study on sodium hyaluronate loaded polyvinyl alcohol nanofiber webs obtained via roller electrospinning; p. 012024.
Walker P.S., Sikorski J., Dowson D., Longfield M.D., Wright V., Buckley T. Behaviour of synovial fluid on surfaces of articular cartilage. A scanning electron microscope study. Ann. Rheum. Dis. 1969;28:1. doi: 10.1136/ard.28.1.1. PubMed DOI PMC
Galandáková A., Ulrichová J., Langová K., Hanáková A., Vrbka M., Hartl M., Gallo J. Characteristics of synovial fluid required for optimization of lubrication fluid for biotribological experiments. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;105:1422–1431. doi: 10.1002/jbm.b.33663. PubMed DOI
Hills B.A., Crawford R.W. Normal and prosthetic synovial joints are lubricated by surface-active phospholipid: A hypothesis. J. Arthroplast. 2003;18:499–505. doi: 10.1016/S0883-5403(03)00072-X. PubMed DOI
Depciuch J., Sowa-Kućma M., Nowak G., Dudek D., Siwek M., Styczeń K., Parlińska-Wojtan M. Phospholipid-protein balance in affective disorders: Analysis of human blood serum using Raman and FTIR spectroscopy. A pilot study. J. Pharm. Biomed. Anal. 2016;131:287–296. doi: 10.1016/j.jpba.2016.08.037. PubMed DOI
Park J.B., Duong C.T., Chang H.G., Sharma A.R., Thompson M.S., Park S., Kwak B.C., Kim T.Y., Lee S.S., Park S. Role of hyaluronic acid and phospholipid in the lubrication of a cobalt–chromium head for total hip arthroplasty. Biointerphases. 2014;9:031007. doi: 10.1116/1.4886255. PubMed DOI
Nečas D., Vrbka M., Gallo J., Křupka I., Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part II: Hard-on-hard bearing pairs. J. Mech. Behav. Biomed. Mater. 2019;89:249–259. doi: 10.1016/j.jmbbm.2018.09.026. PubMed DOI
Dowson D. Lubrication and wear of joints. Physiotherapy. 1973;59:104. PubMed
Furmann D., Nečas D., Rebenda D., Čípek P., Vrbka M., Křupka I., Hartl M. The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage. Materials. 2020;13:1334. doi: 10.3390/ma13061334. PubMed DOI PMC
Stevenson H., Parkes M., Austin L., Jaggard M., Akhbari P., Vaghela U., Williams H.R., Gupte C., Cann P. The development of a small-scale wear test for CoCrMo specimens with human synovial fluid. Biotribology. 2018;14:1–10. doi: 10.1016/j.biotri.2018.04.001. DOI
Brandt J.M., Brière L.K., Marr J., MacDonald S.J., Bourne R.B., Medley J.B. Biochemical comparisons of osteoarthritic human synovial fluid with calf sera used in knee simulator wear testing. J. Biomed. Mater. Res. Part A. 2010;94:961–971. doi: 10.1002/jbm.a.32728. PubMed DOI
Han X.X., Zhao B., Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem. 2009;394:1719–1727. doi: 10.1007/s00216-009-2702-3. PubMed DOI
Rufaqua R., Vrbka M., Choudhury D., Hemzal D., Křupka I., Hartl M. A systematic review on correlation between biochemical and mechanical processes of lubricant film formation in joint replacement of the last 10 years. Lubr. Sci. 2019;31:85–101. doi: 10.1002/ls.1452. DOI
Vrbka M., Nečas D., Hartl M., Křupka I., Urban F., Gallo J. Visualization of lubricating films between artificial head and cup with respect to real geometry. Biotribology. 2015;1:61–65. doi: 10.1016/j.biotri.2015.05.002. DOI
Nečas D., Vrbka M., Urban F., Gallo J., Křupka I., Hartl M. In situ observation of lubricant film formation in THR considering real conformity: The effect of diameter, clearance and material. J. Mech. Behav. Biomed. Mater. 2017;69:66–74. doi: 10.1016/j.jmbbm.2016.12.018. PubMed DOI
Nečas D., Usami H., Niimi T., Sawae Y., Křupka I., Hartl M. Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup. Friction. 2020:1–6. doi: 10.1007/s40544-019-0351-x. DOI
Crisco J.J., Blume J., Teeple E., Fleming B.C., Jay G.D. Assuming exponential decay by incorporating viscous damping improves the prediction of the coeffcient of friction in pendulum tests of whole articular joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2007;221:325–333. doi: 10.1243/09544119JEIM248. PubMed DOI
Choudhury D., Urban F., Vrbka M., Hartl M., Krupka I. A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface. J. Mech. Behav. Biomed. Mater. 2015;45:121–131. doi: 10.1016/j.jmbbm.2014.11.028. PubMed DOI
Choudhury D., Vrbka M., Mamat A.B., Stavness I., Roy C.K., Mootanah R., Krupka I. The impact of surface and geometry on coefficient of friction of artificial hip joints. J. Mech. Behav. Biomed. Mater. 2017;72:192–199. doi: 10.1016/j.jmbbm.2017.05.011. PubMed DOI
Vrbka M., Nečas D., Bartošík J., Hartl M., Křupka I., Galandáková A., Gallo J. Determination of a friction coefficient for THA bearing couples. Acta Chir. Orthop. Traumatol. Cechoslov. 2015;82:341–347. PubMed
Vuurman M.A., Wachs I.E. In situ Raman spectroscopy of alumina-supported metal oxide catalysts. J. Phys. Chem. 1992;96:5008–5016. doi: 10.1021/j100191a051. DOI
Liu Y., Cheng B., Wang K.K., Ling G.P., Cai J., Song C.L., Han G.R. Study of Raman spectra for γ-Al2O3 models by using first-principles method. Solid State Commun. 2014;178:16–22. doi: 10.1016/j.ssc.2013.09.030. DOI
Essendoubi M., Gobinet C., Reynaud R., Angiboust J.F., Manfait M., Piot O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 2016;22:55–62. doi: 10.1111/srt.12228. PubMed DOI
Kotzianová A., Řebíček J., Pokorný M., Hrbáč J., Velebný V. Raman spectroscopy analysis of biodegradable electrospun nanofibers prepared from polymer blends. Mon. Chem. Chem. Mon. 2016;147:919–923. doi: 10.1007/s00706-015-1639-9. DOI
Lin-Vien D., Colthup N.B., Fateley W.G., Grasselli J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier; Amsterdam, The Netherlands: 1991.
Esmonde-White K.A., Mandair G.S., Raaii F., Jacobson J.A., Miller B.S., Urquhart A.G., Roessler B.J., Morris M.D. Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis. J. Biomed. Opt. 2009;14:034013. doi: 10.1117/1.3130338. PubMed DOI PMC
Diem M. Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications. John Wiley & Sons; Hoboken, NJ, USA: 2015.
Chourpa I., Ducel V., Richard J., Dubois P., Boury F. Conformational modifications of α gliadin and globulin proteins upon complex coacervates formation with gum arabic as studied by Raman microspectroscopy. Biomacromolecules. 2006;7:2616–2623. doi: 10.1021/bm060131d. PubMed DOI
Schomacker K.T., Delaney J.K., Champion P.M. Measurements of the absolute Raman cross sections of benzene. J. Chem. Phys. 1986;85:4240–4247. doi: 10.1063/1.451795. DOI
Jakubek R.S., Handen J., White S.E., Asher S.A., Lednev I.K. Ultraviolet resonance Raman spectroscopic markers for protein structure and dynamics. TrAC Trends Anal. Chem. 2018;103:223–229. doi: 10.1016/j.trac.2017.12.002. PubMed DOI PMC
Rygula A., Majzner K., Marzec K.M., Kaczor A., Pilarczyk M., Baranska M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013;44:1061–1076. doi: 10.1002/jrs.4335. DOI
Parachalil D.R., Bruno C., Bonnier F., Blasco H., Chourpa I., McIntyre J., Byrne H.J. Raman spectroscopic screening of high and low molecular weight fractions of human serum. Analyst. 2019;144:4295–4311. doi: 10.1039/C9AN00599D. PubMed DOI
Kusaka J., Takashima K., Yamane D., Ikeuchi K. Fundamental study for all-ceramic artificial hip joint. Wear. 1999;225:734–742. doi: 10.1016/S0043-1648(98)00386-X. DOI
Morillo C., Sawae Y., Murakami T. Effect of bovine serum constituents on the surface of the tribological pair alumina/alumina nanocomposites for total hip replacement. Tribol. Int. 2010;43:1158–1162. doi: 10.1016/j.triboint.2009.12.043. DOI
Sariali E., Stewart T., Jin Z., Fisher J. In vitro investigation of friction under edge-loading conditions for ceramic-on-ceramic total hip prosthesis. J. Orthop. Res. 2010;28:979–985. doi: 10.1002/jor.21100. PubMed DOI