On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-00483S
Grantová Agentura České Republiky
PubMed
32545213
PubMed Central
PMC7321645
DOI
10.3390/ma13112659
PII: ma13112659
Knihovny.cz E-resources
- Keywords
- articular cartilage, friction, hyaluronic acid, rheology,
- Publication type
- Journal Article MeSH
Hyaluronic acid (HA) injections represent one of the most common methods for the treatment of osteoarthritis. However, the clinical results of this method are unambiguous mainly because the mechanism of action has not been clearly clarified yet. Viscosupplementation consists, inter alia, of the improvement of synovial fluid rheological properties by injected solution. The present paper deals with the effect of HA molecular weight on the rheological properties of its solutions and also on friction in the articular cartilage model. Viscosity and viscoelastic properties of HA solutions were analyzed with a rotational rheometer in a cone-plate and plate-plate configuration. In total, four HA solutions with molecular weights between 77 kDa and 2010 kDa were tested. The frictional measurements were realized on a commercial tribometer Bruker UMT TriboLab, while the coefficient of friction (CoF) dependency on time was measured. The contact couple consisted of the articular cartilage pin and the plate made from optical glass. The contact was fully flooded with tested HA solutions. Results showed a strong dependency between HA molecular weight and its rheological properties. However, no clear dependence between HA molecular weight and CoF was revealed from the frictional measurements. This study presents new insight into the dependence between rheological and frictional behavior of the articular cartilage, while such an extensive investigation has not been presented before.
Contipro a s Dolní Dobrouč 401 561 02 Dolní Dobrouč Czech Republic
Faculty of Mechanical Engineering Brno University of Technology 616 69 Brno Czech Republic
See more in PubMed
Lees D., Partington P. Articular cartilage. Orthop. Trauma. 2016;30:265–272. doi: 10.1016/j.mporth.2016.04.007. DOI
Goldring M.B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2012;4:269–285. doi: 10.1177/1759720X12448454. PubMed DOI PMC
Ateshian G.A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 2009;42:1163–1176. doi: 10.1016/j.jbiomech.2009.04.040. PubMed DOI PMC
Forsey R., Fisher J., Thompson J., Stone M., Bell C., Ingham E. The effect of hyaluronic acid and phospholipid-based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27:4581–4590. doi: 10.1016/j.biomaterials.2006.04.018. PubMed DOI
Galandáková A., Ulrichová J., Langová K., Hanáková A., Vrbka M., Hartl M., Gallo J. Characteristics of synovial fluid required for optimization of lubrication fluid for biotribological experiments. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105:1422–1431. doi: 10.1002/jbm.b.33663. PubMed DOI
Balazs E.A., Denlinger J.L. Viscosupplementation: A new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 1993;39:3–9. PubMed
Ghosh P., Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: Are the effects molecular weight dependent? Semin. Arthritis Rheum. 2002;32:10–37. doi: 10.1053/sarh.2002.33720. PubMed DOI
Altman R.D., Manjoo A., Fierlinger A., Niazi F., Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskelet. Disord. 2015;16:321. doi: 10.1186/s12891-015-0775-z. PubMed DOI PMC
Watterson J.R., Esdaile J.M. Viscosupplementation: Therapeutic Mechanisms and clinical potential in osteoarthritis of the knee. J. Am. Acad. Orthop. Surg. 2000;8:277–284. doi: 10.5435/00124635-200009000-00001. PubMed DOI
Mazzucco D., Scott R., Spector M. Composition of joint fluid in patients undergoing total knee replacement and revision arthroplasty: Correlation with flow properties. Biomaterials. 2004;25:4433–4445. doi: 10.1016/j.biomaterials.2003.11.023. PubMed DOI
Ghosh P. The role of hyaluronic acid (hyaluronan) in health and disease: Interactions with cells, cartilage and components of synovial fluid. Clin. Exp. Rheumatol. 1994;12:75–82. PubMed
Zhang Z., Barman S., Christopher G.F. The role of protein content on the steady and oscillatory shear rheology of model synovial fluids. Soft Matter. 2014;10:5965–5973. doi: 10.1039/C4SM00716F. PubMed DOI
Balazs E.A. Viscoelastic properties of hyaluronan and its therapeutic use. In: Garg G.G., Hales C.A., editors. Chemistry and Biology of Hyaluronan. 1st ed. Volume 1. Elsevier Ltd.; Amsterdam, The Netherlands: 2004. pp. 415–455.
Falcone S.J., Palmeri D.M., Berg R.A. Rheological and cohesive properties of hyaluronic acid. J. Biomed. Mater. Res. A. 2006;76A:721–728. doi: 10.1002/jbm.a.30623. PubMed DOI
Bhuanantanondh P., Grecov D., Kwok E. Rheological Study of viscosupplements and synovial fluid in patients with osteoarthritis. J. Med. Biol. Eng. 2010;32:12–16. doi: 10.5405/jmbe.834. DOI
Altman R.D. Status of hyaluronan supplementation therapy in osteoarthritis. Curr. Rheumatol. Rep. 2003;5:7–14. doi: 10.1007/s11926-003-0077-6. PubMed DOI
Mathieu P., Conrozier T., Vignon E., Rozand Y., Rinaudo M. Rheologic behavior of osteoarthritic synovial fluid after addition of hyaluronic acid: A pilot study. Clin. Orthop. Relat. Res. 2009;467:3002–3009. doi: 10.1007/s11999-009-0867-x. PubMed DOI PMC
Bhuanantanondh P., Grecov D., Kwok E., Guy P. Rheology of osteoarthritic synovial fluid mixed with viscosupplements: A pilot study. Biomed. Eng. Lett. 2011;1:213–219. doi: 10.1007/s13534-011-0034-7. DOI
Dowson D. Modes of lubrication in human joints. Proc. Inst. Mech. Eng. 1996;181:45–54.
McCutchen C.W. The frictional properties of animal joints. Wear. 1962;5:1–17. doi: 10.1016/0043-1648(62)90176-X. DOI
Dowson D., Jin Z.-M. Micro-elastohydrodynamic lubrication of synovial joints. Eng. Med. 1986;15:63–65. doi: 10.1243/EMED_JOUR_1986_015_019_02. PubMed DOI
Murakami T. The lubrication in natural synovial joints and joint prostheses. JSME Int. J. Ser. III Vib. Control Eng. Eng. Ind. 1990;33:465–474. doi: 10.1299/jsmec1988.33.465. DOI
Murakami T., Higaki H., Sawae Y., Ohtsuki N., Moriyama S., Nakanishi Y. Adaptive multimode lubrication in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. H. 2006;212:23–35. doi: 10.1243/0954411981533791. PubMed DOI
Ateshian G.A. A theoretical formulation for boundary friction in articular cartilage. J. Biomech. Eng. 1997;119:81–86. doi: 10.1115/1.2796069. PubMed DOI
Ikeuchi K. Origin and future of hydration lubrication. Proc. Inst. Mech. Eng. J. 2007;221:301–305. doi: 10.1243/13506501JET214. DOI
Bell C.J., Ingham E., Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. H. 2006;220:23–31. doi: 10.1243/095441105X69060. PubMed DOI
Murakami T., Yarimitsu S., Nakashima K., Sawae Y., Sakai N. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction. 2013;1:150–162. doi: 10.1007/s40544-013-0010-6. DOI
Seror J., Zhu L., Goldberg R., Day A.J., Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015;6:6497. doi: 10.1038/ncomms7497. PubMed DOI PMC
Yarimitsu S., Sasaki S., Murakami T., Suzuki A. Evaluation of lubrication properties of hydrogel artificial cartilage materials for joint prosthesis. Biosurf. Biotribol. 2016;2:40–47. doi: 10.1016/j.bsbt.2016.02.005. DOI
Murakami T., Nakashima K., Yarimitsu S., Sawae Y., Sakai N. Effectiveness of adsorbed film and gel layer in hydration lubrication as adaptive multimode lubrication mechanism for articular cartilage. Proc. Inst. Mech. Eng. J. 2011;225:1174–1185. doi: 10.1177/1350650111415756. DOI
Szarko M., Muldrew K., Bertram J.E.A. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet. Disord. 2010;11:281. doi: 10.1186/1471-2474-11-231. PubMed DOI PMC
Fam H., Bryant J.T., Kontopoulou M. Rheological properties of synovial fluids. Biorheology. 2007;44:59–74. PubMed
Mazzucco D., McKinley G., Scott R.D., Spector M. Rheology of joint fluid in total knee arthroplasty patients. J. Orthop. Res. 2002;20:1157–1163. doi: 10.1016/S0736-0266(02)00050-5. PubMed DOI
Lapasin R. Rheological Studies Dedicated to the Development of a Novel Injectable Polymeric Blend for Viscosupplementation Treatment. Chem. Biochem. Eng. Q. 2016;29:511–518. doi: 10.15255/CABEQ.2014.2148. DOI
Bonnevie E.D., Galesso D., Secchieri C., Bonassar L.J., Awad H.A. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS ONE. 2019;14:e0216702. doi: 10.1371/journal.pone.0216702. PubMed DOI PMC
Rainer F., Ribitsch V. Viscoelastic properties of normal human synovia and their relation to biomechanics. Zeitschrift fur Rheumatologie. 1985;44:114–119. PubMed
Nicholls M., Manjoo A., Shaw P., Niazi F., Rosen J. A Comparison Between Rheological Properties of Intra-articular Hyaluronic Acid Preparations and Reported Human Synovial Fluid. Adv. Ther. 2018;35:523–530. doi: 10.1007/s12325-018-0688-y. PubMed DOI PMC
Borzacchiello A., Mayol L., Schiavinato A., Ambrosio L. Effect of hyaluronic acid amide derivative on equine synovial fluid viscoelasticity. J. Biomed. Mater. Res. A. 2009;92A:1162–1170. doi: 10.1002/jbm.a.32455. PubMed DOI
Balazs E.A. The physical properties of synovial fluid and the special role of hyaluronic acid. In: Helfet A.J., editor. Disorders of the Knee. 1st ed. Vol. 2. JB Lippincott & Co.; Philadelphia, PA, USA: 1974. pp. 63–75.
Finelli I., Chiessi E., Galesso D., Renier D., Paradossi G. A new viscosupplement based on partially hydrophobic hyaluronic acid: A comparative study. Biorheology. 2011;48:263–275. doi: 10.3233/BIR-2011-0596. PubMed DOI
Krishnan R., Kopacz M., Ateshian G.A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 2004;22:565–570. doi: 10.1016/j.orthres.2003.07.002. PubMed DOI PMC
Bonnevie E.D., Galesso D., Secchieri C., Cohen I., Bonassar L.J., Awad H.A. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS ONE. 2015;10:e0143415. doi: 10.1371/journal.pone.0143415. PubMed DOI PMC
Kwiecinski J.J., Dorosz S.G., Ludwig T.E., Abubacker S., Cowman M.K., Schmidt T.A. The effect of molecular weight on hyaluronan’s cartilage boundary lubricating ability—Alone and in combination with proteoglycan 4. Osteoarthr. Cartil. 2011;19:1356–1362. doi: 10.1016/j.joca.2011.07.019. PubMed DOI
Appleyard R.C., Burkhardt D., Ghosh P., Read R., Cake M., Swain M.V., Murrell G.A.C. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr. Cartil. 2003;11:65–77. doi: 10.1053/joca.2002.0867. PubMed DOI
Kiviranta P., Lammentausta E., Töyräs J., Kiviranta I., Jurvelin J.S. Indentation diagnostics of cartilage degeneration. Osteoarthr. Cartil. 2008;16:796–804. doi: 10.1016/j.joca.2007.10.016. PubMed DOI
Richard F., Villars M., Thibaud S. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. J. Mech. Behav. Biomed. Mater. 2013;24:41–52. doi: 10.1016/j.jmbbm.2013.04.012. PubMed DOI
DuRaine G., Neu C.P., Chan S.M.T., Komvopoulos K., June R.K., Reddi A.H. Regulation of the friction coefficient of articular cartilage by TGF-β1 and IL-1β. J. Orthop. Res. 2009;27:249–256. doi: 10.1002/jor.20713. PubMed DOI
Chan S.M.T., Neu C.P., Komvopoulos K., Reddi A.H. The role of lubricant entrapment at biological interfaces: Reduction of friction and adhesion in articular cartilage. J. Biomech. 2011;44:2015–2020. doi: 10.1016/j.jbiomech.2011.04.015. PubMed DOI
Nečas D., Vrbka M., Urban F., Křupka I., Hartl M. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements. J. Mech. Behav. Biomed. Mater. 2016;55:295–307. doi: 10.1016/j.jmbbm.2015.11.006. PubMed DOI
Myant C.W., Cann P. The effect of transient conditions on synovial fluid protein aggregation lubrication. J. Mech. Behav. Biomed. Mater. 2014;34:349–357. doi: 10.1016/j.jmbbm.2014.02.005. PubMed DOI
Ma L., Rainforth W.M. The effect of lubrication on the friction and wear of Biolox®delta. Acta Biomater. 2012;8:2348–2359. doi: 10.1016/j.actbio.2011.12.037. PubMed DOI
Schmidt T.A., Gastelum N.S., Nguyen Q.T., Schumacher B.L., Sah R.L. Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum. 2007;56:882–891. doi: 10.1002/art.22446. PubMed DOI
Seror J., Sorkin R., Klein J. Boundary lubrication by macromolecular layers and its relevance to synovial joints. Polym. Adv. Technol. 2014;25:468–477. doi: 10.1002/pat.3295. DOI
Klein J. Hydration lubrication. Friction. 2013;1:1–23. doi: 10.1007/s40544-013-0001-7. DOI
Jahn S., Klein J. Lubrication of articular cartilage. Physics Today. 2018;71:48–54. doi: 10.1063/PT.3.3898. DOI
Maheu E., Rannou F., Reginster J.-Y. Efficacy and safety of hyaluronic acid in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin. Arthritis Rheum. 2016;45:S28–S33. doi: 10.1016/j.semarthrit.2015.11.008. PubMed DOI
Tıkız C., Ünlü Z., Şener A., Efe M., Tüzün Ç. Comparison of the efficacy of lower and higher molecular weight viscosupplementation in the treatment of hip osteoarthritis. Clin. Rheum. 2005;24:244–250. doi: 10.1007/s10067-004-1013-5. PubMed DOI
Bannuru R.R., Vaysbrot E.E., Sullivan M.C., McAlindon T.E. Relative efficacy of hyaluronic acid in comparison with NSAIDs for knee osteoarthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2014;43:593–599. doi: 10.1016/j.semarthrit.2013.10.002. PubMed DOI
Jevsevar D., Donnelly P., Brown G.A., Cummins D.S. Viscosupplementation for osteoarthritis of the knee. J. Bone Jt. Surg. Am. 2015;97:2047–2060. doi: 10.2106/JBJS.N.00743. PubMed DOI
Rutjes A.W.S., Jüni P., da Costa B.R., Trelle S., Nüesch E., Reichenbach S. Viscosupplementation for osteoarthritis of the knee. Ann. Intern. Med. 2012;157:180–191. doi: 10.7326/0003-4819-157-3-201208070-00473. PubMed DOI
Arrich J. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: Systematic review and meta-analysis. Can. Med. Assoc. J. 2005;172:1039–1043. doi: 10.1503/cmaj.1041203. PubMed DOI PMC
Bruyère O., Cooper C., Pelletier J.-P., Branco J., Luisa Brandi M., Guillemin F., Hochberg M.C., Kanis J.A., Kvien T.K., Martel-Pelletier J., et al. An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) Semin. Arthritis Rheum. 2014;44:253–263. doi: 10.1016/j.semarthrit.2014.05.014. PubMed DOI
McAlindon T.E., Bannuru R.R., Sullivan M.C., Arden N.K., Berenbaum F., Bierma-Zeinstra S.M., Hawker G.A., Henrotin Y., Hunter D.J., Kawaguchi H., et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014;22:363–388. doi: 10.1016/j.joca.2014.01.003. PubMed DOI
Pan Y.-S., Xiong D.-S., Ma R.-Y. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 2007;262:1021–1025. doi: 10.1016/j.wear.2006.10.005. DOI
Katta J.K., Marcolongo M., Lowman A., Mansmann K.A. Friction and wear behavior of poly (vinyl alcohol)/poly (vinyl pyrrolidone) hydrogels for articular cartilage replacement. J. Biomed. Mater. Res. A. 2007;83A:471–479. doi: 10.1002/jbm.a.31238. PubMed DOI
Murakami T., Sakai N., Yamaguchi T., Yarimitsu S., Nakashima K., Sawae Y., Suzuki A. Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribol. Int. 2015;89:19–26. doi: 10.1016/j.triboint.2014.12.013. DOI
Murakami T., Yarimitsu S., Nakashima K., Yamaguchi T., Sawae Y., Sakai N., Suzuki A. Superior lubricity in articular cartilage and artificial hydrogel cartilage. Proc. Inst. Mech. Eng. J. 2014;228:1099–1111. doi: 10.1177/1350650114530273. PubMed DOI
Murakami T., Yarimitsu S., Sakai N., Nakashima K., Yamaguchi T., Sawae Y., Suzuki A. Superior lubrication mechanism in poly (vinyl alcohol) hybrid gel as artificial cartilage. Proc. Inst. Mech. Eng. J. 2017;231:1160–1170. doi: 10.1177/1350650117712881. DOI
Nečas D., Vrbka M., Galandáková A., Křupka I., Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 2019;89:237–248. PubMed
Čípek P., Rebenda D., Nečas D., Vrbka M., Křupka I., Hartl M. Visualization of lubrication film in model of synovial joint. Tribol. Ind. 2019;41:387–393. doi: 10.24874/ti.2019.41.03.08. DOI
Size Matters: Rethinking Hertz Model Interpretation for Cell Mechanics Using AFM
Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy