Phenology responses of temperate butterflies to latitude depend on ecological traits

. 2020 Jan ; 23 (1) : 172-180. [epub] 20191113

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31724293

Grantová podpora
GA14-33733S Czech Science Foundation
038/2019/P University of South Bohemia

Global change influences species' seasonal occurrence, or phenology. In cold-adapted insects, the activity is expected to start earlier with a warming climate, but contradictory evidence exists, and the reactions may be linked to species-specific traits. Using data from the GBIF database, we selected 105 single-brooded Holarctic butterflies inhabiting broad latitudinal ranges. We regressed patterns of an adult flight against latitudes of the records, controlling for altitude and year effects. Species with delayed flight periods towards the high latitudes, or stable flight periods across latitudes, prevailed over those that advanced their flight towards the high latitudes. The responses corresponded with the species' seasonality (flight of early season species was delayed and flight of summer species was advanced at high latitudes) and oceanic vs. continental climatic niches (delays in oceanic, stability in continental species). Future restructuring of butterfly seasonal patterns in high latitudes will reflect climatic niches, and hence the evolutionary history of participating species.

Zobrazit více v PubMed

Aalberg Haugen, I.M. & Gotthard, K. (2015). Diapause induction and relaxed selection on alternative developmental pathways in a butterfly. J. Anim. Ecol., 84, 464-472.

Altermatt, F. (2010a). Tell me what you eat and I’ll tell you when you fly: diet can predict phenological changes in response to climate change. Ecol. Lett., 13, 1475-1484.

Altermatt, F. (2010b). Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B., 277, 1281-1287.

Altermatt, F. (2012). Temperature-related shifts in butterfly phenology depend on the habitat. Glob. Change Biol., 18, 2429-2438.

Barton, M.G. & Terblanche, J.S. (2014). Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol., 53, 249-258.

Bell, J.R., Botham, M.S., Henrys, P.A., Leech, D.I., Pearce-Higgins, J.W., Shortall, C.R. et al. (2019). Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Global Change Biol., 25, 1982-1994.

Booth, T.H., Nix, H.A., Hutchinson, M.F. & Busby, J.R. (1987). Grid Matching: a new method for homoclime analysis. Agric. For. Meteorol., 39, 241-255.

Bowden, J.J., Eskildsen, A., Hansen, R.R., Olsen, K., Kurle, C.M. & Høye, T.T. (2015). High-Arctic butterflies become smaller with rising temperatures. Biol. Lett., 11, 20150574.

Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L. et al. (2019). rgbif: Interface to the Global Biodiversity Information Facility API. R package version 1.3.0. Available at: https://CRAN.R-project.org/package=rgbif. Last accessed 22.1.2019.

Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026.

Cizek, L., Fric, Z.F. & Konvička, M. (2006). Host plant defences and voltinism in European butterflies. Ecol. Entomol., 31, 337-344.

Cohen, J.M., Lajeunesse, M.J. & Rohr, J.R. (2018). A global synthesis of animal phenological responses to climate change. Nat. Clim. Change, 8, 224-228.

Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliola, J. et al. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang., 2, 121-124.

Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005-1012.

Ekholm, A., Tack, A.J.M., Bolmgren, K. & Roslin, T. (2019). The forgotten season: the impact of autumn phenology on a specialist insect herbivore community on oak. Ecol. Entomol., 44, 425-435.

Essayan, R. & Jugan, D. (2016). Phénologies tardives: observations de Rhopalocères en novembre et décembre en Bourgogne - Franche-Comté (Lepidoptera: Rhopalocera). Alexanor, 27, 385-396.

Essens, T., van Langevelde, F., Vos, R.A., Van Swaay, C.A.M. & WallisDeVries, M.F. (2017). Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv., 21, 439-450.

Eugster, W., Rouse, W.R., Pielke, R.A., Mcfadden, J.P., Baldocchi, D.D., Kittel, T.G.F. et al. (2000). Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol., 6, 84-115.

Forrest, J.R.K. (2016). Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci., 17, 49-54.

Franz, H. (1979). Ökologie der Hochgebirge. Ulmer, Stuttgart, p. 495.

GBIF Backbone Taxonomy (2018).GBIF Secretariat.Checklist Dataset. Available at: https://doi.org/10.15468/39omei. Last accessed 22.1.2019.

Gentili, R., Baroni, C., Caccianiga, M., Armiraglio, S., Ghiani, A. & Citterio, S. (2015). Potential warm-stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecol. Complex., 21, 87-99.

Hegerl, G.C., Bronnimann, S., Schurer, A. & Cowan, T. (2018). The early 20th century warming: Anomalies, causes, and consequences. WIRES Clim. Change, 9, e522.

Hijmans, R.J. & van Etten, J. (2012). raster: Geographic analysis and modeling with raster data. R package version 2.0-12. Available at: http://CRAN.R-project.org/package=raster. Last accessed 22 January 2019.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 5, 1965-1978.

Høye, T.T., Eskildsen, A., Hansen, R.R., Bowden, J.J., Schmidt, N.M. & Kissling, W.D. (2014). Phenology of high-arctic butterflies and their floral resources: species-specific responses to climate change. Curr. Zool., 60, 243-251.

Karlsson, B. (2014). Extended season for northern butterflies. Int. J. Biometeorol., 58, 691-701.

Kleckova, I., Konvicka, M. & Klecka, J. (2014). Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity. J. Therm. Biol., 41, 50-58.

König, P., Tautenhahn, S., Cornelissen, J.H.C., Kattge, J., Bönisch, G. & Römermann, C. (2018). Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecol. Biogeogr., 27, 310-321.

Konvička, M., Benes, J., Cizek, O., Kuras, T. & Kleckova, I. (2016). Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Entomol., 113, 295-301.

Layberry, R.A., Hall, P.W. & Lafontaine, J.D. (1998). The Butterflies of Canada. Toronto University Press, Toronto, p. 354.

Lewins, R. (1968). Evolution in Changing Environments. Princeton University Press, New Jersey, p. 132.

Mu, J., Peng, Y., Xi, X., Wu, X., Li, G., Niklas, K.J. et al. (2015). Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Ann. Bot., 116, 899-906.

Nieto-Sanchez, S., Gutierrez, D.D. & Wilson, R.J. (2015). Long-term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Divers. Distrib., 21, 950-961.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change Annu. Rev. Ecol. Evol. Syst., 37, 637-669.

Parmesan, C. & Yohe, G.A. (2003). Globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.

Post, E., Steinman, B.A. & Mann, M.E. (2018). Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep., 8, 3927.

R Core Team R (2014). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.

Ryan, S.F., Valella, P., Thivierge, G., Aardema, M.L. & Scriber, J.M. (2018). The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae). Insect Sci., 25, 328-336.

Shapiro, A.M. (1975). Temporal component of butterfly species diversity. In: Ecology and Evolution of Communities (edsCody, M.L. & Diamond, J.M.). Harvard University Press, Cambridge, pp. 560.

Smilauer, P. & Leps, J. (2014). Multivariate Analysis of Ecological Data Using Canoco 5, 2nd edn. Cambridge University Press, Cambridge, p. 300.

Staley, J.T., Botham, M.S., Amy, S.R., Hulmes, S. & Pywell, R.F. (2018). Experimental evidence for optimal hedgerow cutting regimes for Brown hairstreak butterflies. Insect Conserv. Divers., 11, 213-218.

Tolman, T. & Lewington, R. (2008). Collins butterfly guide: the most complete field guide to the butterflies of Britain and Europe. Harper Collins Publishers, London, p. 384.

Totland, Ø. (1994). Influence of climate, time of day and season, and flower density on insect flower visitation in alpine Norway. Arct. Antarct. Alp. Res., 26, 66-71.

Van Dyck, H. & Wiklund, C. (2002). Seasonal butterfly design: morphological plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evolution. Biol., 15, 216-225.

Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. (2015). The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos, 124, 54-61.

Vrba, P., Nedved, O., Zahradnickova, H. & Konvicka, M. (2017a). More complex than expected: Cold hardiness and the concentration of cryoprotectants in overwintering larvae of five Erebia butterflies (Lepidoptera: Nymphalidae). Eur. J. Entomol., 114, 470-480.

Vrba, P., Nedved, O., Zahradnickova, H. & Konvicka, M. (2017b). Temporal plasticity in cold hardiness and cryoprotectant contents in northern versus temperate Colias butterflies (Lepidoptera: Pieridae). Cryoletters, 38, 330-338.

Wahlberg, N. (1998). The life history and ecology of Euphydryas maturna (Nymphalidae: Melitaeini) in Finland. Nota Lepid., 21, 154-169.

WallisDeVries, M.F. (2014). Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic Appl. Ecol., 15, 279-287.

WallisDeVries, M.F. & van Swaay, C.A.M. (2006). Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob. Change Biol., 12, 1620-1626.

Wepprich, T., Adrion, J.R., Ries, L., Wiedmann, J. & Haddad, N.M. (2019). Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE, 14, e0216270.

Wong, M.K.L., Guenard, B. & Lewis, O.T. (2019). Trait-based ecology of terrestrial arthropods. Biol. Rev., 94, 999-1022.

Yamamura, N. & Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool., 33, 289-298.

Zar, J.H. (2009). Biostatistical Analysis, 5th edn. Prentice-Hall/Pearson, Upper Saddle River, New Jersey, p. 929.

Zeuss, D., Brunzel, S., Brandl, R. & Meiri, S. (2017). Environmental drivers of voltinism and body size in insect assemblages across Europe. Global Ecol. Biogeogr., 26, 154-165.

Zimov, S.A., Zimov, N.S., Tikhonov, A.N. & Chapin, F.S. III (2012). Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev., 57, 26-45.

Zografou, K., Adamidis, G.C., Grill, A., Kati, V., Wilson, R.J. & Halley, J.M. (2015). Who flies first? - habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: a case study from the south-east Mediterranean. Ecol. Entomol., 40, 562-574.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

. 2020 Oct 15 ; 7 (1) : 351. [epub] 20201015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...