Bacterial Type II Secretion System and Its Mitochondrial Counterpart

. 2023 Apr 25 ; 14 (2) : e0314522. [epub] 20230327

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36971557

Over the billions of years that bacteria have been around, they have evolved several sophisticated protein secretion nanomachines to deliver toxins, hydrolytic enzymes, and effector proteins into their environments. Of these, the type II secretion system (T2SS) is used by Gram-negative bacteria to export a wide range of folded proteins from the periplasm across the outer membrane. Recent findings have demonstrated that components of the T2SS are localized in mitochondria of some eukaryotic lineages, and their behavior is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). This review focuses on recent advances in the field and discusses open questions concerning the function and evolution of miT2SSs.

Zobrazit více v PubMed

Filloux A. 2022. Bacterial protein secretion systems: game of types. Microbiology 168:e001193. doi:10.1099/mic.0.001193. PubMed DOI

Cianciotto NP, White RC. 2017. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 85:e00014-17. doi:10.1128/IAI.00014-17. PubMed DOI PMC

Denise R, Abby SS, Rocha EPC. 2019. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 17:e3000390. doi:10.1371/journal.pbio.3000390. PubMed DOI PMC

Elhosseiny NM, Attia AS. 2018. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 7:1–15. doi:10.1038/s41426-018-0030-4. PubMed DOI PMC

Sandkvist M. 2001. Type II secretion and pathogenesis. Infect Immun 69:3523–3535. doi:10.1128/IAI.69.6.3523-3535.2001. PubMed DOI PMC

White RC, Cianciotto NP. 2019. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 5:e000273. doi:10.1099/mgen.0.000273. PubMed DOI PMC

Nivaskumar M, Francetic O. 2014. Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta 1843:1568–1577. doi:10.1016/j.bbamcr.2013.12.020. PubMed DOI

Margulis L. 1970. Origin of eukaryotic cells; evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian earth. Yale University Press, New Haven, CT.

Mereschkowski C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 1905:593–604.

Petrů M, Dohnálek V, Füssy Z, Doležal P. 2021. Fates of Sec, Tat and YidC translocases in mitochondria and other eukaryotic compartments. Mol Biol Evol 38:5241–5254. doi:10.1093/molbev/msab253. PubMed DOI PMC

López-García P, Moreira D. 2020. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 5:655–667. doi:10.1038/s41564-020-0710-4. PubMed DOI

Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, Klimeš V, Petrů M, Vaitová Z, Čepička I, Hryzáková K, Harant K, Gray MW, Chami M, Guilvout I, Francetic O, Franz Lang B, Vlček Č, Tsaousis AD, Eliáš M, Doležal P. 2021. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 12:2947. doi:10.1038/s41467-021-23046-7. PubMed DOI PMC

Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. 2020. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 18:22. doi:10.1186/s12915-020-0741-6. PubMed DOI PMC

Chaudhury P, Quax TEF, Albers SV. 2018. Versatile cell surface structures of archaea. Mol Microbiol 107:298–311. doi:10.1111/mmi.13889. PubMed DOI

Berry JL, Pelicic V. 2015. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39:134–154. doi:10.1093/femsre/fuu001. PubMed DOI PMC

Craig L, Forest KT, Maier B. 2019. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 17:429–440. doi:10.1038/s41579-019-0195-4. PubMed DOI

Wang F, Craig L, Liu X, Rensing C, Egelman EH. 2022. Microbial nanowires: type IV pili or cytochrome filaments? Trends Microbiol doi:10.1016/j.tim.2022.11.004. PubMed DOI PMC

Lory S, Strom MS. 1997. Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa: a review. Gene 192:117–121. doi:10.1016/S0378-1119(96)00830-X. PubMed DOI

Santos-Moreno J, East A, Guilvout I, Nadeau N, Bond PJ, Nhieu GTNV, Francetic O. 2017. Polar N-terminal residues conserved in type 2 secretion pseudopilins determine subunit targeting and membrane extraction steps during fibre assembly. J Mol Biol 429:1746–1765. PubMed

Zhang S, Gu S, Rycroft P, Ruaudel F, Delolme F, Robert X, Ballut L, Pickersgill RW, Shevchik VE. 2022. Scaffolding protein GspB/OutB facilitates assembly of the Dickeya dadantii type 2 secretion system by anchoring the outer membrane secretin pore to the inner membrane and to the peptidoglycan cell wall. mBio 13:e0025322. doi:10.1128/mbio.00253-22. PubMed DOI PMC

Strozen TG, Stanley H, Gu Y, Boyd J, Bagdasarian M, Sandkvist M, Howard SP. 2011. Involvement of the GspAB complex in assembly of the type II secretion system secretin of Aeromonas and Vibrio species. J Bacteriol 193:2322–2331. doi:10.1128/JB.01413-10. PubMed DOI PMC

Chernyatina AA, Low HH. 2019. Core architecture of a bacterial type II secretion system. Nat Commun 10:5437. doi:10.1038/s41467-019-13301-3. PubMed DOI PMC

Korotkov KV, Sandkvist M, Hol WGJ. 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351. doi:10.1038/nrmicro2762. PubMed DOI PMC

Ghosal D, Kim KW, Zheng H, Kaplan M, Truchan HK, Lopez AE, McIntire IE, Vogel JP, Cianciotto NP, Jensen GJ. 2019. In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat Microbiol 4:2101–2108. doi:10.1038/s41564-019-0603-6. PubMed DOI PMC

Yan Z, Yin M, Xu D, Zhu Y, Li X. 2017. Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24:177–183. doi:10.1038/nsmb.3350. PubMed DOI

Yin M, Yan Z, Li X. 2018. Structural insight into the assembly of the type II secretion system pilotin–secretin complex from enterotoxigenic Escherichia coli. Nat Microbiol 3:581–587. doi:10.1038/s41564-018-0148-0. PubMed DOI

Abendroth J, Mitchell DD, Korotkov K, Johnson TL, Kreger A, Sandkvist M, Hol WGJ. 2009. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J Struct Biol 166:303–315. doi:10.1016/j.jsb.2009.03.009. PubMed DOI PMC

Dazzoni R, Li Y, Lopez-Castilla A, Brier S, Mechaly A, Cordier F, Haouz A, Nilges M, Francetic O, Bardiaux B, Izadi-Pruneyre N. 2023. Structure and dynamic association of an assembly platform subcomplex of the bacterial type II secretion system. Structure 31:152–165.e7. doi:10.1016/j.str.2022.12.003. PubMed DOI

Wang X, Pineau C, Gu S, Guschinskaya N, Pickersgill RW, Shevchik VE. 2012. Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD protomers within the type 2 secretion system. J Biol Chem 287:19082–19093. doi:10.1074/jbc.M112.346338. PubMed DOI PMC

Camberg JL, Johnson TL, Patrick M, Abendroth J, Hol WG, Sandkvist M. 2007. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26:19–27. doi:10.1038/sj.emboj.7601481. PubMed DOI PMC

Robien MA, Krumm BE, Sandkvist M, Hol WGJ. 2003. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333:657–674. doi:10.1016/j.jmb.2003.07.015. PubMed DOI

Campos M, Nilges M, Cisneros DA, Francetic O. 2010. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc Natl Acad Sci USA 107:13081–13086. doi:10.1073/pnas.1001703107. PubMed DOI PMC

López-Castilla A, Thomassin JL, Bardiaux B, Zheng W, Nivaskumar M, Yu X, Nilges M, Egelman EH, Izadi-Pruneyre N, Francetic O. 2017. Structure of the calcium-dependent type 2 secretion pseudopilus. Nat Microbiol 2:1686–1695. doi:10.1038/s41564-017-0041-2. PubMed DOI PMC

Korotkov KV, Hol WGJ. 2008. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 15:462–468. doi:10.1038/nsmb.1426. PubMed DOI

Escobar CA, Douzi B, Ball G, Barbat B, Alphonse S, Quinton L, Voulhoux R, Forest KT. 2021. Structural interactions define assembly adapter function of a type II secretion system pseudopilin. Structure 29:1116–1127.e8. doi:10.1016/j.str.2021.05.015. PubMed DOI

Douzi B, Ball G, Cambillau C, Tegoni M, Voulhoux R. 2011. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 286:40792–40801. doi:10.1074/jbc.M111.294843. PubMed DOI PMC

Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF, Filloux A. 2001. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741. doi:10.1093/emboj/20.23.6735. PubMed DOI PMC

Palomäki T, Pickersgill R, Riekki R, Romantschuk M, Saarilahti HT. 2002. A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora. Mol Biol 43:585–596. PubMed

East A, Mechaly AE, Huysmans GHM, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley AP, Buschiazzo A, Alzari PM, Bond PJ, Francetic O. 2016. Structural basis of pullulanase membrane binding and secretion revealed by X-ray crystallography, molecular dynamics and biochemical analysis. Structure 24:92–104. doi:10.1016/j.str.2015.10.023. PubMed DOI

Pineau C, Guschinskaya N, Gonçalves IRG, Ruaudel F, Robert X, Gouet P, Ballut L, Shevchik VE. 2021. Structure-function analysis of pectate lyase Pel3 reveals essential facets of protein recognition by the bacterial type 2 secretion system. J Biol Chem 296:100305. PubMed PMC

Reichow SL, Korotkov KV, Gonen M, Sun J, Delarosa JR, Hol WGJ, Gonen T. 2011. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 5:215–218. doi:10.4161/chan.5.3.15268. PubMed DOI PMC

Michel-Souzy S, Douzi B, Cadoret F, Raynaud C, Quinton L, Ball G, Voulhoux R. 2018. Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. J Biol Chem 293:19441–19450. doi:10.1074/jbc.RA117.001127. PubMed DOI PMC

Korotkov KV, Sandkvist M. 2019. Architecture, function, and substrates of the type II secretion system. EcoSal Plus 8:1–14. doi:10.1128/ecosalplus.ESP-0034-2018. PubMed DOI PMC

Gadwal S, Johnson TL, Remmer H, Sandkvist M. 2018. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 14:e1007341. doi:10.1371/journal.ppat.1007341. PubMed DOI PMC

Horstman AL, Kuehn MJ. 2002. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545. doi:10.1074/jbc.M203740200. PubMed DOI PMC

Ferrandez Y, Condemine G. 2008. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol Microbiol 69:1349–1357. doi:10.1111/j.1365-2958.2008.06366.x. PubMed DOI

Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. 2022. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol 6:253–262. doi:10.1038/s41559-021-01638-2. PubMed DOI

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557:101–105. doi:10.1038/s41586-018-0059-5. PubMed DOI

Wang C, Youle RJ. 2009. The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. PubMed PMC

Gentle IE, Burri L, Lithgow T. 2005. Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58:1216–1225. doi:10.1111/j.1365-2958.2005.04906.x. PubMed DOI

Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. 2011. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 28:1581–1591. doi:10.1093/molbev/msq305. PubMed DOI PMC

Schäfer K, Künzler P, Schneider K, Klingl A, Eubel H, Carrie C. 2020. The plant mitochondrial TAT pathway is essential for complex III biogenesis. Current Biol 30:840–853.e5. doi:10.1016/j.cub.2020.01.001. PubMed DOI

Petrů M, Wideman J, Moore K, Alcock F, Palmer T, Doležal P. 2018. Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria. BMC Biol 16:141. doi:10.1186/s12915-018-0607-3. PubMed DOI PMC

Andrade-Navarro MA, Sanchez-Pulido L, McBride HM. 2009. Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr Opin Cell Biol 21:560–567. doi:10.1016/j.ceb.2009.04.005. PubMed DOI

Sugiura A, Mattie S, Prudent J, McBride HM. 2017. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251–254. doi:10.1038/nature21375. PubMed DOI

Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. PubMed PMC

McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M, Calmettes C, Moraes TF, Burrows LL, Howell PL. 2016. PilN binding modulates the structure and binding partners of the pseudomonas aeruginosa type IVa pilus protein PilM. J Biol Chem 291:11003–11015. doi:10.1074/jbc.M116.718353. PubMed DOI PMC

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 1999. Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci U S A 96:4285–4288. https://www.pnas.org/doi/10.1073/pnas.96.8.4285. PubMed DOI PMC

Fulton C. 1974. Axenic cultivation of Naegleria gruberi. Requirement for methionine. Exp Cell Res 88:365–370. doi:10.1016/0014-4827(74)90253-5. PubMed DOI

Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. 2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. doi:10.1016/j.cell.2010.01.032. PubMed DOI

Mach J, Bíla J, Ženíšková K, Arbon D, Malych R, Glavanakovová M, Nývltová E, Sutak R. 2018. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol 48:719–727. doi:10.1016/j.ijpara.2018.03.005. PubMed DOI

Velle KB, Kennard AS, Trupinić M, Ivec A, Swafford AJM, Nolton E, Rice LM, Tolić IM, Fritz-Laylin LK, Wadsworth P. 2022. Naegleria’s mitotic spindles are built from unique tubulins and highlight core spindle features. Curr Biol 32:1247–1261.e6. doi:10.1016/j.cub.2022.01.034. PubMed DOI PMC

Maciver SK, Piñero JE, Lorenzo-Morales J. 2020. Is Naegleria fowleri an emerging parasite? Trends Parasitol 36:19–28. doi:10.1016/j.pt.2019.10.008. PubMed DOI

Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL, Mulvey CM, Crook OM, Gatto L, Lilley KS. 2019. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat Commun 10:331. doi:10.1038/s41467-018-08191-w. PubMed DOI PMC

Oikonomou CM, Jensen GJ. 2017. Cellular electron cryotomography: toward structural biology in situ. Annu Rev Biochem 86:873–896. doi:10.1146/annurev-biochem-061516-044741. PubMed DOI

Lill R. 2020. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 401:855–876. doi:10.1515/hsz-2020-0117. PubMed DOI

Ajioka RS, Phillips JD, Kushner JP. 2006. Biosynthesis of heme in mammals. Biochim Biophys Acta Mol Cell Res 1763:723–736. doi:10.1016/j.bbamcr.2006.05.005. PubMed DOI

Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A. 2018. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol 76:163–178. doi:10.1016/j.semcdb.2017.08.055. PubMed DOI PMC

Fritz-Laylin LK, Ginger ML, Walsh C, Dawson SC, Fulton C. 2011. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 162:607–618. doi:10.1016/j.resmic.2011.03.003. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace