Effects of temperature on sperm motility of burbot Lota lota: spontaneous activation and calcium dependency

. 2019 Oct ; 95 (4) : 1137-1144. [epub] 20190812

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31355446

Grantová podpora
Ministry of Education
CENAKVA (LM2018099) Youth and Sports of the Czech Republic
Biodiversity (CZ.02.1.01./0.0/0.0/16_025/0007370) Youth and Sports of the Czech Republic
project: NAZV QK1710310 Ministry of Agriculture of the Czech Republic

Several factors regulating activation of spermatozoon motility in Eurasian burbot, Lota lota, including osmolality, calcium (Ca2+ ) ions, and temperature were investigated. Spermatozoon motility in Eurasian burbot, Lota lota was assessed at 4 and 30°C in seminal fluid, isotonic media (with and without Ca2+ ) and hypotonic media (with and without Ca2+ ). Spermatozoa were spontaneously activated in seminal fluid at 20°C and the maximum motility was recorded at 30°C, which is out of the spawning temperature range, indicating that no risk of activation occurs during routine semen handling in artificial insemination. Initiation of spermatozoon motility in L. lota is mediated by Ca2+ and sensitivity to Ca2+ is dependent on temperature.

Zobrazit více v PubMed

Alavi, S. M. H., & Cosson, J. (2006). Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biology International, 30, 1-14.

Alavi, S. M. H., Gela, D., Rodina, M., & Linhart, O. (2011). Roles of osmolality, calcium-potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm. Comparative Biochemistry and Physiology A, 160, 166-174.

Baynes, S. M., Scott, A. P., & Dawson, A. P. (1981). Rainbow trout, Salmo gairdneri Richardson, spermatozoa: Effects of cations and pH on motility. Journal of Fish Biology, 19, 259-267.

Beirão, J., Soares, F., Herra'ez, M. P., Dinis, M. T., & Cabrita, E. (2011). Changes in Solea senegalensis sperm quality throughout the year. Animal Reproduction Science, 126, 122-129.

Billard, R. (1986). Spermatogenesis and spermatology of some teleost fish species. Reproduction Nutrition Development, 2, 877-920.

Billard, R., Cosson, J., Perchec, G., & Linhart, O. (1995). Biology of sperm and artificial reproduction in carp. Aquaculture, 124, 95-112.

Boitano, S., & Omoto, C. K. (1992). Trout sperm swimming patterns and role of intracellular Ca2+. Cell Motility and the Cytoskeleton, 21, 74-82.

Bombardelli, R. A., Sanches, E. A., Baggio, D. M., Sykora, R. M., Souza, B. E., Tessaro, L., & Pianal, P. A. (2013). Effects of the spermatozoa: oocyte ratio, water volume and water temperature on artificial fertilisation and sperm activation of cascudo-preto. Revista Brasileira de Zootecnia, 42, 1-6.

Bondarenko, O., Dzyuba, B., Cosson, J., Yamaner, G., Prokopchuk, G., Psenicka, M., & Linhart, O. (2013). Volume changes during the motility period of fish spermatozoa: Interspecies differences. Theriogenology, 79, 872-881.

Brokaw, C. J. (1986). Sperm motility. In T. E. Schroeder (Ed.), Methods in cell biology; 27. Echinoderm gametes and embryos (pp. 41-56). Academic Press.

Butts, I. A., Alavi, S. M., Mokdad, A., & Pitcher, T. E. (2013). Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus. Comparative Biochemistry and Physiology A, 166, 147-157.

Cohen, D. M., Inada, T., Iwamato, T., & Scialabba, N. (1990). FAO species catalogue. Vol. 10. Gadiform fishes of the world (order Gadiformes). Rome, Italy: FAO.

Cosson, J. (2004). The ionic and osmotic factors controlling motility of fish spermatozoa. Aquaculture International, 12, 69-85.

Cosson, J. (2008). The motility apparatus of fish spermatozoa. In S. M. H. Alavi, J. Cosson, & K. Coward (Eds.), Fish spermatology (pp. 281-316). Oxford, UK: Alfa Science.

Cosson, M. P., Billard, R., Gatti, J. L., & Christen, R. (1985). Rapid and quantitative assessment of trout spermatozoa motility using stroboscopy. Aquaculture, 46, 71-75.

Cosson, M. P., Billard, R., & Letellier, L. (1989). Rise of internal Ca2+ accompanies the initiation of trout sperm motility. Cell Motility and the Cytoskeleton, 14, 424-434.

Dadras, H., Dzyuba, V., Cosson, J., Golpour, A., & Dzyuba, B. (2016). The in vitro effect of temperature on motility and antioxidant response of common carp Cyprinus carpio spermatozoa. Journal of Thermal Biology, 59, 64-68.

Darszon, A., Nishigaki, T., Beltran, C., & Trevino, C. L. (2011). Calcium channels in the development, maturation and function of spermatozoa. Physiological Reviews, 91, 1305-1355.

Dziewulska, K., & Pilarska, M. (2018). Inhibitory effect of K+ ions and influence of other ions and osmolality on the spermatozoa motility of European burbot (Lota lota L.). PLoS One, 13, e0196415.

Inaba, K. (2008). Molecular mechanism of the activation of flagellar motility in sperm. In S. M. H. Alavi, J. Cosson, K. Coward, & G. Rafiee (Eds.), Fish spermatology (pp. 281-316). Oxford, UK: Alpha Science Ltd.

Kho, K. H., Morisawa, M., & Choi, K. S. (2004). Role of Ca2+ and calmodulin on the initiation of sperm motility in salmonid fishes. Journal of Microbiology and Biotechnology, 14, 456-465.

Krasznai, Z., Márián, T., Izumi, H., Damjanovich, S., Balkay, L., Tron, L., & Morisawa, M. (2000). Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proceedings of the National Academy of Sciences of the United States of America, 97, 2052-2057.

Lahnsteiner, F. (2011). Spermatozoa of the teleost fish Perca fluviatilis (perch) have the ability to swim for more than two hours in saline solutions. Aquaculture, 314, 221-224.

Lahnsteiner, F. (2012). Thermotolerance of brown trout, Salmo trutta, gametes and embryos to increased water temperatures. Journal of Applied Ichthyology, 28, 745-751.

Lahnsteiner, F., Bergcr, R., Weismand, T., & Patzner, R. (1997). Sperm motility and seminal fluid composition in the burbot, Lota lota. Journal of Applied Ichthyology, 13, 113-119.

Lahnsteiner, F., Berger, B., Weismann, T., & Patzner, R. A. (1995). Fine structure and motility of spermatozoa and composition of the seminal plasma in the perch. Journal of Fish Biology, 47, 492-508.

Lahnsteiner, F., & Mansour, N. (2012). The effect of temperature on sperm motility and enzymatic activity in brown trout Salmo trutta, burbot Lota lota and grayling Thymallus thymallus. Journal of Fish Biology, 81, 197-209.

Martínez-Pastor, F., Tisado, E. J., Garde, J. J., Anel, L., & de Paz, P. (2011). Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology, 75, 783-795.

McPhail, J. D. (1997). A review of burbot (Lota lota) life history and habitat use in relation to compensation and improvement opportunities. Canadian Manuscript Report of Fisheries and Aquatic Sciences, 2397, 37.

Moorehead, W. R., & Biggs, H. G. (1974). 2-Amino-2-methyl-1-propanol as the alkalising agent in an improved continuous-flow cresolphthalein complexone procedure for calcium in serum. Clinical Chemistry, 20, 1458-1460.

Morisawa, M. (2008). Adaptation and strategy for fertilisation in the sperm of teleost fish. Journal of Applied Ichthyology, 24, 362-370.

Morita, M., Takemura, A., & Okuno, M. (2003). Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus. Journal of Experimental Biology, 206, 913-921.

Perchec, G., Jeulin, C., Cosson, J., Andr'e, F., & Billard, R. (1995). Relationship between sperm ATP content and motility of carp spermatozoa. Journal of Cell Science, 108, 747-753.

Perchec-Poupard, G., Gatti, J. L., Cosson, J., Jeulin, C., Fierville, F., & Billard, R. (1997). Effects of extracellular environment on the osmotic signal transduction involved in activation of motility of carp spermatozoa. Journal of Reproduction and Fertility, 110, 315-327.

Purchase, C. F., Butts, I. A. E., Alonso-Fernandez, A., & Trippel, E. A. (2010). Thermal reaction norms in sperm performance of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 67, 498-510.

Purchase, C. F., & Earle, P. T. (2012). Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. Journal of Applied Ichthyology, 28, 1013-1016.

Scott, W. B., & Crossman, E. J. (1973). Freshwater fishes of Canada. Ottawa, Canada: Fisheries Research Board of Canada.

Stoss, J. (1983). Fish gamete preservation and spermatozoan physiology. In W. S. Hoar, D. J. Randall, & E. M. Donaldson (Eds.), Fish physiology (pp. 305-350. IX B.). New York, NY: Academic Press.

Svačina, P., Příborský, J., Blecha, M., Policar, T., & Velíšek, J. (2016). Haematological and biochemical response of burbot (Lota lota L.) exposed to four different anaesthetics. Czech Journal of Animal Science, 61, 414-420.

Takei, G. L., Mukai, C., & Okuno, M. (2012). Transient Ca2+ mobilisation caused by osmotic shock initiates salmonid fish sperm motility. Journal of Experimental Biology, 215, 630-641.

Tanimoto, S., Kudo, Y., Nakazawa, T., & Morisawa, M. (1994). Implication that potassium flux and increase in intracellular calcium are necessary for the initiation of sperm motility in salmonid fishes. Molecular Reproduction and Development, 39, 409-414.

Toth, G. P., Christ, S. A., McCarthy, H. W., Torsella, J. A., & Smith, M. K. (1995). Computer-assisted motion analysis of sperm from the common carp. Journal of Fish Biology, 47, 986-1003.

Wilson-Leedy, J. G., & Ingermann, R. L. (2007). Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology, 67, 661-672.

Zuccarelli, M. D., Jensen, N., & Ingermann, R. L. (2007). Inhibitory effect of osmotic concentration, potassium and pH on motility of the sperm of the North American burbot Lota lota maculosa. Journal of Fish Biology, 70, 178-189.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace