Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
PIE-201980E100
Spanish National Research Council
PID2019-105117RR-C22/ AEI / 10.13039/501100011033
Agencia Estatal de Investigación
PubMed
35890135
PubMed Central
PMC9318074
DOI
10.3390/ph15070835
PII: ph15070835
Knihovny.cz E-resources
- Keywords
- colchicine site, niclosamide, salicylanilides, signal transducer and activator of transcription (STAT3) inhibitors, tubulin polymerization inhibitors,
- Publication type
- Journal Article MeSH
The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.
See more in PubMed
Bates D., Eastman A. Microtubule Destabilising Agents: Far More than Just Antimitotic Anticancer Drugs. Br. J. Clin. Pharmacol. 2017;83:255–268. doi: 10.1111/bcp.13126. PubMed DOI PMC
Leung Y.Y., Yao Hui L.L., Kraus V.B. Colchicine—Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015;45:341–350. doi: 10.1016/j.semarthrit.2015.06.013. PubMed DOI PMC
Reyes A.Z., Hu K.A., Teperman J., Wampler Muskardin T.L., Tardif J.-C., Shah B., Pillinger M.H. Anti-Inflammatory Therapy for COVID-19 Infection: The Case for Colchicine. Ann. Rheum. Dis. 2021;80:550–557. doi: 10.1136/annrheumdis-2020-219174. PubMed DOI PMC
Colchicine. COVID-19 Treatment Guidelines. [(accessed on 22 February 2022)]; Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/colchicine/
Greene L.M., Meegan M.J., Zisterer D.M. Combretastatins: More than Just Vascular Targeting Agents? J. Pharmacol. Exp. Ther. 2015;355:212–227. doi: 10.1124/jpet.115.226225. PubMed DOI
Pérez-Pérez M.-J., Priego E.-M., Bueno O., Martins M.S., Canela M.-D., Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J. Med. Chem. 2016;59:8685–8711. doi: 10.1021/acs.jmedchem.6b00463. PubMed DOI
McLoughlin E.C., O’Boyle N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals. 2020;13:8. doi: 10.3390/ph13010008. PubMed DOI PMC
Lu Y., Chen J., Xiao M., Li W., Miller D.D. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharm. Res. 2012;29:2943–2971. doi: 10.1007/s11095-012-0828-z. PubMed DOI PMC
Canela M.-D., Pérez-Pérez M.-J., Noppen S., Sáez-Calvo G., Díaz J.F.F., Camarasa M.-J., Liekens S., Priego E.-M. Novel Colchicine-Site Binders with a Cyclohexanedione Scaffold Identified through a Ligand-Based Virtual Screening Approach. J. Med. Chem. 2014;57:3924–3938. doi: 10.1021/jm401939g. PubMed DOI
Bueno O., Estévez Gallego J., Martins S., Prota A.E., Gago F., Gómez-Sanjuan A., Camarasa M.J., Barasoain I., Steinmetz M.O., Díaz J.F., et al. High-Affinity Ligands of the Colchicine Domain in Tubulin Based on a Structure-Guided Design. Sci. Rep. 2018;8:4242. doi: 10.1038/s41598-018-22382-x. PubMed DOI PMC
Wang Y., Zhang H., Gigant B., Yu Y., Wu Y., Chen X., Lai Q., Yang Z., Chen Q., Yang J. Structures of a Diverse Set of Colchicine Binding Site Inhibitors in Complex with Tubulin Provide a Rationale for Drug Discovery. FEBS J. 2016;283:102–111. doi: 10.1111/febs.13555. PubMed DOI
Satoh K., Zhang L., Zhang Y., Chelluri R., Boufraqech M., Nilubol N., Patel D., Shen M., Kebebew E. Identification of Niclosamide as a Novel Anticancer Agent for Adrenocortical Carcinoma. Clin. Cancer Res. 2016;22:3458–3466. doi: 10.1158/1078-0432.CCR-15-2256. PubMed DOI PMC
Chen W., Mook R.A., Jr., Premont R.T., Wang J. Niclosamide: Beyond an Antihelminthic Drug. Cell Signal. 2018;41:89–96. doi: 10.1016/j.cellsig.2017.04.001. PubMed DOI PMC
Ren X., Duan L., He Q., Zhang Z., Zhou Y., Wu D., Pan J., Pei D., Ding K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010;1:454–459. doi: 10.1021/ml100146z. PubMed DOI PMC
Li R., You S., Hu Z., Chen Z.G., Sica G.L., Khuri F.R., Curran W.J., Shin D.M., Deng X. Inhibition of STAT3 by Niclosamide Synergizes with Erlotinib against Head and Neck Cancer. PLoS ONE. 2013;8:e74670. doi: 10.1371/journal.pone.0074670. PubMed DOI PMC
Kusaba T., Nakayama T., Yamazumi K., Yakata Y., Yoshizaki A., Inoue K., Nagayasu T., Sekine I. Activation of STAT3 Is a Marker of Poor Prognosis in Human Colorectal Cancer. Oncol. Rep. 2006;15:1445–1451. doi: 10.3892/or.15.6.1445. PubMed DOI
Huang Q., Zhong Y., Dong H., Zheng Q., Shi S., Zhu K., Qu X., Hu W., Zhang X., Wang Y. Revisiting Signal Transducer and Activator of Transcription 3 (STAT3) as an Anticancer Target and Its Inhibitor Discovery: Where Are We and Where Should We Go? Eur. J. Med. Chem. 2020;187:111922. doi: 10.1016/j.ejmech.2019.111922. PubMed DOI
Luo F., Luo M., Rong Q.-X., Zhang H., Chen Z., Wang F., Zhao H.-Y., Fu L.-W. Niclosamide, an Antihelmintic Drug, Enhances Efficacy of PD-1/PD-L1 Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. J. Immunother. Cancer. 2019;7:245. doi: 10.1186/s40425-019-0733-7. PubMed DOI PMC
Zou S., Tong Q., Liu B., Huang W., Tian Y., Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020;19:145. doi: 10.1186/s12943-020-01258-7. PubMed DOI PMC
Kauerová T., Goněc T., Jampílek J., Hafner S., Gaiser A.-K., Syrovets T., Fedr R., Souček K., Kollar P. Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int. J. Mol. Sci. 2020;21:3416. doi: 10.3390/ijms21103416. PubMed DOI PMC
Maly D.J., Leonetti F., Backes B.J., Dauber D.S., Harris J.L., Craik C.S., Ellman J.A. Expedient Solid-Phase Synthesis of Fluorogenic Protease Substrates Using the 7-Amino-4-Carbamoylmethylcoumarin (ACC) Fluorophore. J. Org. Chem. 2002;67:910–915. doi: 10.1021/jo016140o. PubMed DOI
Dahlgren M.K., Kauppi A.M., Olsson I.-M., Linusson A., Elofsson M. Design, Synthesis, and Multivariate Quantitative Structure−Activity Relationship of Salicylanilides Potent Inhibitors of Type III Secretion in Yersinia. J. Med. Chem. 2007;50:6177–6188. doi: 10.1021/jm070741b. PubMed DOI
Singh M., Singh S.K., Gangwar M., Nath G., Singh S.K. Design, Synthesis and Mode of Action of Some Benzothiazole Derivatives Bearing an Amide Moiety as Antibacterial Agents. RSC Adv. 2014;4:19013–19023. doi: 10.1039/C4RA02649G. DOI
Kang S., Min H.-J., Kang M.-S., Jung M.-G., Kim S. Discovery of Novel 2-Hydroxydiarylamide Derivatives as TMPRSS4 Inhibitors. Bioorg. Med. Chem. Lett. 2013;23:1748–1751. doi: 10.1016/j.bmcl.2013.01.055. PubMed DOI
Li C., Ren S.-F., Hou J.-L., Yi H.-P., Zhu S.-Z., Jiang X.-K., Li Z.-T. F⋯H–N Hydrogen Bonding Driven Foldamers: Efficient Receptors for Dialkylammonium Ions. Angew. Chem. Int. Ed. 2005;44:5725–5729. doi: 10.1002/anie.200500982. PubMed DOI
Racine E., Monnier F., Vors J.-P., Taillefer M. A Simple Copper-Catalyzed Synthesis of Tertiary Acyclic Amides. Org. Lett. 2011;13:2818–2821. doi: 10.1021/ol200750p. PubMed DOI
Shin D.-S., Kim H.-N., Shin K.D., Yoon Y.J., Kim S.-J., Han D.C., Kwon B.-M. Cryptotanshinone Inhibits Constitutive Signal Transducer and Activator of Transcription 3 Function through Blocking the Dimerization in DU145 Prostate Cancer Cells. Cancer Res. 2009;69:193–202. doi: 10.1158/0008-5472.CAN-08-2575. PubMed DOI
Furtek S.L., Backos D.S., Matheson C.J., Reigan P. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chem. Biol. 2016;11:308–318. doi: 10.1021/acschembio.5b00945. PubMed DOI
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Kollár P., Bárta T., Závalová V., Smejkal K., Hampl A. Geranylated Flavanone Tomentodiplacone B Inhibits Proliferation of Human Monocytic Leukaemia (THP-1) Cells. Br. J. Pharmacol. 2011;162:1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC
Salicylanilides and Their Anticancer Properties