• This record comes from PubMed

Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3)

. 2022 Jul 06 ; 15 (7) : . [epub] 20220706

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
PIE-201980E100 Spanish National Research Council
PID2019-105117RR-C22/ AEI / 10.13039/501100011033 Agencia Estatal de Investigación

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

See more in PubMed

Bates D., Eastman A. Microtubule Destabilising Agents: Far More than Just Antimitotic Anticancer Drugs. Br. J. Clin. Pharmacol. 2017;83:255–268. doi: 10.1111/bcp.13126. PubMed DOI PMC

Leung Y.Y., Yao Hui L.L., Kraus V.B. Colchicine—Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015;45:341–350. doi: 10.1016/j.semarthrit.2015.06.013. PubMed DOI PMC

Reyes A.Z., Hu K.A., Teperman J., Wampler Muskardin T.L., Tardif J.-C., Shah B., Pillinger M.H. Anti-Inflammatory Therapy for COVID-19 Infection: The Case for Colchicine. Ann. Rheum. Dis. 2021;80:550–557. doi: 10.1136/annrheumdis-2020-219174. PubMed DOI PMC

Colchicine. COVID-19 Treatment Guidelines. [(accessed on 22 February 2022)]; Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/colchicine/

Greene L.M., Meegan M.J., Zisterer D.M. Combretastatins: More than Just Vascular Targeting Agents? J. Pharmacol. Exp. Ther. 2015;355:212–227. doi: 10.1124/jpet.115.226225. PubMed DOI

Pérez-Pérez M.-J., Priego E.-M., Bueno O., Martins M.S., Canela M.-D., Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J. Med. Chem. 2016;59:8685–8711. doi: 10.1021/acs.jmedchem.6b00463. PubMed DOI

McLoughlin E.C., O’Boyle N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals. 2020;13:8. doi: 10.3390/ph13010008. PubMed DOI PMC

Lu Y., Chen J., Xiao M., Li W., Miller D.D. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharm. Res. 2012;29:2943–2971. doi: 10.1007/s11095-012-0828-z. PubMed DOI PMC

Canela M.-D., Pérez-Pérez M.-J., Noppen S., Sáez-Calvo G., Díaz J.F.F., Camarasa M.-J., Liekens S., Priego E.-M. Novel Colchicine-Site Binders with a Cyclohexanedione Scaffold Identified through a Ligand-Based Virtual Screening Approach. J. Med. Chem. 2014;57:3924–3938. doi: 10.1021/jm401939g. PubMed DOI

Bueno O., Estévez Gallego J., Martins S., Prota A.E., Gago F., Gómez-Sanjuan A., Camarasa M.J., Barasoain I., Steinmetz M.O., Díaz J.F., et al. High-Affinity Ligands of the Colchicine Domain in Tubulin Based on a Structure-Guided Design. Sci. Rep. 2018;8:4242. doi: 10.1038/s41598-018-22382-x. PubMed DOI PMC

Wang Y., Zhang H., Gigant B., Yu Y., Wu Y., Chen X., Lai Q., Yang Z., Chen Q., Yang J. Structures of a Diverse Set of Colchicine Binding Site Inhibitors in Complex with Tubulin Provide a Rationale for Drug Discovery. FEBS J. 2016;283:102–111. doi: 10.1111/febs.13555. PubMed DOI

Satoh K., Zhang L., Zhang Y., Chelluri R., Boufraqech M., Nilubol N., Patel D., Shen M., Kebebew E. Identification of Niclosamide as a Novel Anticancer Agent for Adrenocortical Carcinoma. Clin. Cancer Res. 2016;22:3458–3466. doi: 10.1158/1078-0432.CCR-15-2256. PubMed DOI PMC

Chen W., Mook R.A., Jr., Premont R.T., Wang J. Niclosamide: Beyond an Antihelminthic Drug. Cell Signal. 2018;41:89–96. doi: 10.1016/j.cellsig.2017.04.001. PubMed DOI PMC

Ren X., Duan L., He Q., Zhang Z., Zhou Y., Wu D., Pan J., Pei D., Ding K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010;1:454–459. doi: 10.1021/ml100146z. PubMed DOI PMC

Li R., You S., Hu Z., Chen Z.G., Sica G.L., Khuri F.R., Curran W.J., Shin D.M., Deng X. Inhibition of STAT3 by Niclosamide Synergizes with Erlotinib against Head and Neck Cancer. PLoS ONE. 2013;8:e74670. doi: 10.1371/journal.pone.0074670. PubMed DOI PMC

Kusaba T., Nakayama T., Yamazumi K., Yakata Y., Yoshizaki A., Inoue K., Nagayasu T., Sekine I. Activation of STAT3 Is a Marker of Poor Prognosis in Human Colorectal Cancer. Oncol. Rep. 2006;15:1445–1451. doi: 10.3892/or.15.6.1445. PubMed DOI

Huang Q., Zhong Y., Dong H., Zheng Q., Shi S., Zhu K., Qu X., Hu W., Zhang X., Wang Y. Revisiting Signal Transducer and Activator of Transcription 3 (STAT3) as an Anticancer Target and Its Inhibitor Discovery: Where Are We and Where Should We Go? Eur. J. Med. Chem. 2020;187:111922. doi: 10.1016/j.ejmech.2019.111922. PubMed DOI

Luo F., Luo M., Rong Q.-X., Zhang H., Chen Z., Wang F., Zhao H.-Y., Fu L.-W. Niclosamide, an Antihelmintic Drug, Enhances Efficacy of PD-1/PD-L1 Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. J. Immunother. Cancer. 2019;7:245. doi: 10.1186/s40425-019-0733-7. PubMed DOI PMC

Zou S., Tong Q., Liu B., Huang W., Tian Y., Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020;19:145. doi: 10.1186/s12943-020-01258-7. PubMed DOI PMC

Kauerová T., Goněc T., Jampílek J., Hafner S., Gaiser A.-K., Syrovets T., Fedr R., Souček K., Kollar P. Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int. J. Mol. Sci. 2020;21:3416. doi: 10.3390/ijms21103416. PubMed DOI PMC

Maly D.J., Leonetti F., Backes B.J., Dauber D.S., Harris J.L., Craik C.S., Ellman J.A. Expedient Solid-Phase Synthesis of Fluorogenic Protease Substrates Using the 7-Amino-4-Carbamoylmethylcoumarin (ACC) Fluorophore. J. Org. Chem. 2002;67:910–915. doi: 10.1021/jo016140o. PubMed DOI

Dahlgren M.K., Kauppi A.M., Olsson I.-M., Linusson A., Elofsson M. Design, Synthesis, and Multivariate Quantitative Structure−Activity Relationship of Salicylanilides Potent Inhibitors of Type III Secretion in Yersinia. J. Med. Chem. 2007;50:6177–6188. doi: 10.1021/jm070741b. PubMed DOI

Singh M., Singh S.K., Gangwar M., Nath G., Singh S.K. Design, Synthesis and Mode of Action of Some Benzothiazole Derivatives Bearing an Amide Moiety as Antibacterial Agents. RSC Adv. 2014;4:19013–19023. doi: 10.1039/C4RA02649G. DOI

Kang S., Min H.-J., Kang M.-S., Jung M.-G., Kim S. Discovery of Novel 2-Hydroxydiarylamide Derivatives as TMPRSS4 Inhibitors. Bioorg. Med. Chem. Lett. 2013;23:1748–1751. doi: 10.1016/j.bmcl.2013.01.055. PubMed DOI

Li C., Ren S.-F., Hou J.-L., Yi H.-P., Zhu S.-Z., Jiang X.-K., Li Z.-T. F⋯H–N Hydrogen Bonding Driven Foldamers: Efficient Receptors for Dialkylammonium Ions. Angew. Chem. Int. Ed. 2005;44:5725–5729. doi: 10.1002/anie.200500982. PubMed DOI

Racine E., Monnier F., Vors J.-P., Taillefer M. A Simple Copper-Catalyzed Synthesis of Tertiary Acyclic Amides. Org. Lett. 2011;13:2818–2821. doi: 10.1021/ol200750p. PubMed DOI

Shin D.-S., Kim H.-N., Shin K.D., Yoon Y.J., Kim S.-J., Han D.C., Kwon B.-M. Cryptotanshinone Inhibits Constitutive Signal Transducer and Activator of Transcription 3 Function through Blocking the Dimerization in DU145 Prostate Cancer Cells. Cancer Res. 2009;69:193–202. doi: 10.1158/0008-5472.CAN-08-2575. PubMed DOI

Furtek S.L., Backos D.S., Matheson C.J., Reigan P. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chem. Biol. 2016;11:308–318. doi: 10.1021/acschembio.5b00945. PubMed DOI

Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC

Kollár P., Bárta T., Závalová V., Smejkal K., Hampl A. Geranylated Flavanone Tomentodiplacone B Inhibits Proliferation of Human Monocytic Leukaemia (THP-1) Cells. Br. J. Pharmacol. 2011;162:1534–1541. doi: 10.1111/j.1476-5381.2010.01171.x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...