Salicylanilides and Their Anticancer Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PIE-201980E100
M.-J. P.-P. , AECSIC
PubMed
36675241
PubMed Central
PMC9861143
DOI
10.3390/ijms24021728
PII: ijms24021728
Knihovny.cz E-zdroje
- Klíčová slova
- STAT3, TK EGFR, anticancer properties, drug repurposing, mitochondrial uncoupling, niclosamide, salicylanilides,
- MeSH
- anthelmintika * farmakologie MeSH
- lidé MeSH
- niklosamid farmakologie MeSH
- salicylanilidy * farmakologie chemie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anthelmintika * MeSH
- niklosamid MeSH
- salicylanilidy * MeSH
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Zobrazit více v PubMed
Honkala A., Malhotra S.V., Kummar S., Junttila M.R. Harnessing the predictive power of preclinical models for oncology drug development. Nat. Rev. Drug Discov. 2022;21:99–114. doi: 10.1038/s41573-021-00301-6. PubMed DOI
Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A., Doig A., Guilliams T., Latimer J., McNamee C., et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019;18:41–58. doi: 10.1038/nrd.2018.168. PubMed DOI
Pantziarka P., Vandeborne L., Bouche G. A Database of Drug Repurposing Clinical Trials in Oncology. Front. Pharmacol. 2021;12:790952. doi: 10.3389/fphar.2021.790952. PubMed DOI PMC
Alasadi A., Chen M., Swapna G.V.T., Tao H.L., Guo J.J., Collantes J., Fadhil N., Montelione G.T., Jin S.K. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018;9:215. doi: 10.1038/s41419-017-0092-6. PubMed DOI PMC
Ren X., Duan L., He Q., Zhang Z., Zhou Y., Wu D., Pan J., Pei D., Ding K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010;1:454–459. doi: 10.1021/ml100146z. PubMed DOI PMC
Senkowski W., Zhang X., Olofsson M.H., Isacson R., Höglund U., Gustafsson M., Nygren P., Linder S., Larsson R., Fryknäs M. Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer. Mol. Cancer Ther. 2015;14:1504–1516. doi: 10.1158/1535-7163.MCT-14-0792. PubMed DOI
Xiao W., Xu Z., Chang S., Li B., Yu D., Wu H., Xie Y., Wang Y., Xie B., Sun X., et al. Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myeloma by enhancing DNA damage responses and suppressing the p38 MAPK pathway. Cancer Lett. 2019;444:45–59. doi: 10.1016/j.canlet.2018.12.014. PubMed DOI
Tanaka A., Muto S., Konno M., Itai A., Matsuda H. A new IkappaB kinase beta inhibitor prevents human breast cancer progression through negative regulation of cell cycle transition. Cancer Res. 2006;66:419–426. doi: 10.1158/0008-5472.CAN-05-0741. PubMed DOI
Kim S., Ko D., Lee Y., Jang S., Lee I.Y. Anti-cancer activity of the novel 2-hydroxydiarylamide derivatives IMD-0354 and KRT1853 through suppression of cancer cell invasion, proliferation, and survival mediated by TMPRSS4. Sci. Rep. 2019;9:10003. doi: 10.1038/s41598-019-46447-7. PubMed DOI PMC
Wang X., Shen C., Liu Z., Peng F., Chen X., Yang G., Zhang D., Yin Z., Ma J., Zheng Z., et al. Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. Cell Death Dis. 2018;9:1032. doi: 10.1038/s41419-018-1058-z. PubMed DOI PMC
Hsieh C.L., Huang H.S., Chen K.C., Saka T., Chiang C.Y., Chung L.W.K., Sung S.Y. A Novel Salicylanilide Derivative Induces Autophagy Cell Death in Castration-Resistant Prostate Cancer via ER Stress-Activated PERK Signaling Pathway. Mol. Cancer Ther. 2020;19:101–111. doi: 10.1158/1535-7163.MCT-19-0387. PubMed DOI
Wang B., Wang Z., Ai F., Tang W.K., Zhu G. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition. J. Inorg. Biochem. 2015;142:118–125. doi: 10.1016/j.jinorgbio.2014.10.003. PubMed DOI
Schweizer M.T., Haugk K., McKiernan J.S., Gulati R., Cheng H.H., Maes J.L., Dumpit R.F., Nelson P.S., Montgomery B., McCune J.S., et al. A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PloS ONE. 2018;13:e0198389. doi: 10.1371/journal.pone.0198389. PubMed DOI PMC
Burock S., Daum S., Keilholz U., Neumann K., Walther W., Stein U. Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: The NIKOLO trial. BMC Cancer. 2018;18:297. doi: 10.1186/s12885-018-4197-9. PubMed DOI PMC
Felsher I.M. Salicylanilide Therapy in Tinea Capitis. Arch. Dermatol. Syphilol. 1948;58:56–63. doi: 10.1001/archderm.1948.01520200059008. PubMed DOI
Brain R.T., Crow K., Haber H., McKenny C. Treatment of Ringworm of the Scalp. Br. Med. J. 1948;1:723–726. doi: 10.1136/bmj.1.4554.723. PubMed DOI PMC
Swan G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. J. S. Afr. Vet. Assoc. 1999;70:61–70. doi: 10.4102/jsava.v70i2.756. PubMed DOI
Macielag M.J., Demers J.P., Fraga-Spano S.A., Hlasta D.J., Johnson S.G., Kanojia R.M., Russell R.K., Sui Z., Weidner-Wells M.A., Werblood H., et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem. 1998;41:2939–2945. doi: 10.1021/jm9803572. PubMed DOI
Domalaon R., Okunnu O., Zhanel G.G., Schweizer F. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J. Antibiot. 2019;72:605–616. doi: 10.1038/s41429-019-0186-8. PubMed DOI
Kratky M., Vinsova J., Novotna E., Mandikova J., Trejtnar F., Stolarikova J. Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC
Kratky M., Vinsova J., Novotna E., Mandikova J., Wsol V., Trejtnar F., Ulmann V., Stolarikova J., Fernandes S., Bhat S., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Waisser K., Bures O., Holý P., Kunes J., Oswald R., Jirásková L., Pour M., Klimesová V., Kubicová L., Kaustová J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. 2003;336:53–71. doi: 10.1002/ardp.200390004. PubMed DOI
Imramovský A., Vinsová J., Férriz J.M., Dolezal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Imramovsky A., Vinsova J., Ferriz J.M., Buchta V., Jampilek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI
Krátký M., Vinšová J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates. Med. Chem. 2012;8:732–741. doi: 10.2174/157340612801216346. PubMed DOI
Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorganic Med. Chem. 2016;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Sugita A., Ogawa H., Azuma M., Muto S., Honjo A., Yanagawa H., Nishioka Y., Tani K., Itai A., Sone S. Antiallergic and anti-inflammatory effects of a novel I kappaB kinase beta inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int. Arch. Allergy Immunol. 2009;148:186–198. doi: 10.1159/000161579. PubMed DOI
Williamson R.L., Metcalf R.L. Salicylanilides: A new group of active uncouplers of oxidative phosphorylation. Science. 1967;158:1694–1695. doi: 10.1126/science.158.3809.1694. PubMed DOI
Liechti C., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Kamath S., Buolamwini J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev. 2006;26:569–594. doi: 10.1002/med.20070. PubMed DOI
Zhu X.Y., Xia B., Liu H.C., Xu Y.Q., Huang C.J., Gao J.M., Dong Q.X., Li C.Q. Closantel Suppresses Angiogenesis and Cancer Growth in Zebrafish Models. Assay. Drug Dev. Technol. 2016;14:282–290. doi: 10.1089/adt.2015.679. PubMed DOI
Li Y., Guo B., Xu Z., Li B., Cai T., Zhang X., Yu Y., Wang H., Shi J., Zhu W. Repositioning organohalogen drugs: A case study for identification of potent B-Raf V600E inhibitors via docking and bioassay. Sci. Rep. 2016;6:31074. doi: 10.1038/srep31074. PubMed DOI PMC
Luciano V., Proschak E., Langer J.D., Knapp S., Heering J., Marschalek R. Closantel is an allosteric inhibitor of human Taspase1. iScience. 2021;24:103524. doi: 10.1016/j.isci.2021.103524. PubMed DOI PMC
Shi X., Li H., Shi A., Yao H., Ke K., Dong C., Zhu Y., Qin Y., Ding Y., He Y.H., et al. Discovery of rafoxanide as a dual CDK4/6 inhibitor for the treatment of skin cancer. Oncol. Rep. 2018;40:1592–1600. doi: 10.3892/or.2018.6533. PubMed DOI
Liu J.Z., Hu Y.L., Feng Y., Guo Y.B., Liu Y.F., Yang J.L., Mao Q.S., Xue W.J. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K /Akt/mTOR pathway. Exp. Cell Res. 2019;385:111691. doi: 10.1016/j.yexcr.2019.111691. PubMed DOI
Laudisi F., Di Grazia A., De Simone V., Cherubini F., Colantoni A., Ortenzi A., Franzè E., Dinallo V., Di Fusco D., Monteleone I., et al. Induction of endoplasmic reticulum stress and inhibition of colon carcinogenesis by the anti-helmintic drug rafoxanide. Cancer Lett. 2019;462:1–11. doi: 10.1016/j.canlet.2019.07.014. PubMed DOI
Di Grazia A., Laudisi F., Di Fusco D., Franzè E., Ortenzi A., Monteleone I., Monteleone G., Stolfi C. Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers. 2020;12:1314. doi: 10.3390/cancers12051314. PubMed DOI PMC
Laudisi F., Pacifico T., Maresca C., Luiz-Ferreira A., Antonelli S., Ortenzi A., Colantoni A., Di Grazia A., Franzè E., Colella M., et al. Rafoxanide sensitizes colorectal cancer cells to TRAIL-mediated apoptosis. Biomed. Pharm. 2022;155:113794. doi: 10.1016/j.biopha.2022.113794. PubMed DOI
He W., Xu Z., Song D., Zhang H., Li B., Gao L., Zhang Y., Feng Q., Yu D., Hu L., et al. Antitumor effects of rafoxanide in diffuse large B cell lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun pathways. Life Sci. 2020;243:117249. doi: 10.1016/j.lfs.2019.117249. PubMed DOI
Tanaka A., Konno M., Muto S., Kambe N., Morii E., Nakahata T., Itai A., Matsuda H. A novel NF-kappaB inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-kit receptors. Blood. 2005;105:2324–2331. doi: 10.1182/blood-2004-08-3247. PubMed DOI
Kanduri M., Tobin G., Aleskog A., Nilsson K., Rosenquist R. The novel NF-kappaB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia. Blood Cancer J. 2011;1:e12. doi: 10.1038/bcj.2011.9. PubMed DOI PMC
Uota S., Zahidunnabi Dewan M., Saitoh Y., Muto S., Itai A., Utsunomiya A., Watanabe T., Yamamoto N., Yamaoka S. An IkappaB kinase 2 inhibitor IMD-0354 suppresses the survival of adult T-cell leukemia cells. Cancer Sci. 2012;103:100–106. doi: 10.1111/j.1349-7006.2011.02110.x. PubMed DOI PMC
Nishikawa S., Tanaka A., Matsuda A., Oida K., Jang H., Jung K., Amagai Y., Ahn G., Okamoto N., Ishizaka S., et al. A molecular targeting against nuclear factor-kappaB, as a chemotherapeutic approach for human malignant mesothelioma. Cancer Med. 2014;3:416–425. doi: 10.1002/cam4.202. PubMed DOI PMC
Ochiai T., Saito Y., Saitoh T., Dewan M.Z., Shioya A., Kobayashi M., Kawachi H., Muto S., Itai A., Uota S., et al. Inhibition of IkappaB kinase beta restrains oncogenic proliferation of pancreatic cancer cells. J. Med. Dent. Sci. 2008;55:49–59. PubMed
Feng Y., Pathria G., Heynen-Genel S., Jackson M., James B., Yin J., Scott D.A., Ronai Z.A. Identification and Characterization of IMD-0354 as a Glutamine Carrier Protein Inhibitor in Melanoma. Mol. Cancer Ther. 2021;20:816–832. doi: 10.1158/1535-7163.MCT-20-0354. PubMed DOI PMC
Qu Y., Olsen J.R., Yuan X., Cheng P.F., Levesque M.P., Brokstad K.A., Hoffman P.S., Oyan A.M., Zhang W., Kalland K.H., et al. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat. Chem. Biol. 2018;14:94–101. doi: 10.1038/nchembio.2510. PubMed DOI
Fan-Minogue H., Bodapati S., Solow-Cordero D., Fan A., Paulmurugan R., Massoud T.F., Felsher D.W., Gambhir S.S. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol. Cancer Ther. 2013;12:1896–1905. doi: 10.1158/1535-7163.MCT-12-1243. PubMed DOI PMC
Abd El-Fadeal N.M., Nafie M.S., K El-Kherbetawy M., El-Mistekawy A., Mohammad H.M.F., Elbahaie A.M., Hashish A.A., Alomar S.Y., Aloyouni S.Y., El-Dosoky M., et al. Antitumor Activity of Nitazoxanide against Colon Cancers: Molecular Docking and Experimental Studies Based on Wnt/β-Catenin Signaling Inhibition. Int. J. Mol. Sci. 2021;22:5213. doi: 10.3390/ijms22105213. PubMed DOI PMC
Yu J., Yang K., Zheng J., Zhao W., Sun X. Synergistic tumor inhibition of colon cancer cells by nitazoxanide and obeticholic acid, a farnesoid X receptor ligand. Cancer Gene Ther. 2021;28:590–601. doi: 10.1038/s41417-020-00239-8. PubMed DOI PMC
Hiroko S., Minoru H., Tomoaki Y., Yoshiki H., Isao T., Michiharu S. Studies on the Conformations of Antimicrobial Salicylanilide Derivatives by Spectroscopy. Bull. Chem. Soc. Jpn. 2000;73:2335–2339. doi: 10.1246/bcsj.73.2335. DOI
Deng W., Guo Z., Guo Y., Feng Z., Jiang Y., Chu F. Acryloylamino-salicylanilides as EGFR PTK inhibitors. Bioorg. Med. Chem. Lett. 2006;16:469–472. doi: 10.1016/j.bmcl.2005.06.088. PubMed DOI
Guo L., Wang Q.L., Jiang Q.Q., Jiang Q.J., Jiang Y.B. Anion-triggered substituent-dependent conformational switching of salicylanilides. New hints for understanding the inhibitory mechanism of salicylanilides. J. Org. Chem. 2007;72:9947–9953. doi: 10.1021/jo701823d. PubMed DOI
Imramovský A., Pauk K., Padělková Z., Hanusek J. Crystal Structure of the 5-Chloro Salicylamides: Three Different Types of the H-bonding Influenced Linear Chain Formation in the Solid State. Crystals. 2012;2:349–361. doi: 10.3390/cryst2020349. DOI
Spaczynska E., Mrozek-Wilczkiewicz A., Malarz K., Kos J., Gonec T., Oravec M., Gawecki R., Bak A., Dohanosova J., Kapustikova I., et al. Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Sci. Rep. 2019;9:6387. doi: 10.1038/s41598-019-42595-y. PubMed DOI PMC
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Kauerová T., Goněc T., Jampílek J., Hafner S., Gaiser A.K., Syrovets T., Fedr R., Souček K., Kollar P. Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int. J. Mol. Sci. 2020;21:3416. doi: 10.3390/ijms21103416. PubMed DOI PMC
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Tang Z., Acuna U.M., Fernandes N.F., Chettiar S., Li P.K., EC D.E.B. Structure-Activity Relationship of Niclosamide Derivatives. AntiCancer Res. 2017;37:2839–2843. doi: 10.21873/anticanres.11635. PubMed DOI
Kumar R., Coronel L., Somalanka B., Raju A., Aning O.A., An O., Ho Y.S., Chen S., Mak S.Y., Hor P.Y., et al. Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat. Commun. 2018;9:3931. doi: 10.1038/s41467-018-05805-1. PubMed DOI PMC
Childress E.S., Alexopoulos S.J., Hoehn K.L., Santos W.L. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J. Med. Chem. 2018;61:4641–4655. doi: 10.1021/acs.jmedchem.7b01182. PubMed DOI
Menegazzi M., Masiello P., Novelli M. Anti-Tumor Activity of. Antioxidants. 2020;10:18. doi: 10.3390/antiox10010018. PubMed DOI PMC
Terada H. The interaction of highly active uncouplers with mitochondria. Biochim. Biophys. Acta. 1981;639:225–242. doi: 10.1016/0304-4173(81)90011-2. PubMed DOI
Terada H., Goto S., Yamamoto K., Takeuchi I., Hamada Y., Miyake K. Structural requirements of salicylanilides for uncoupling activity in mitochondria: Quantitative analysis of structure-uncoupling relationships. Biochim. Biophys. Acta. 1988;936:504–512. doi: 10.1016/0005-2728(88)90027-8. PubMed DOI
Tao H., Zhang Y., Zeng X., Shulman G.I., Jin S. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat. Med. 2014;20:1263–1269. doi: 10.1038/nm.3699. PubMed DOI PMC
Weinbach E.C., Garbus J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature. 1969;221:1016–1018. doi: 10.1038/2211016a0. PubMed DOI
Martínez-Reyes I., Chandel N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020;11:102. doi: 10.1038/s41467-019-13668-3. PubMed DOI PMC
Chaban Y., Boekema E.J., Dudkina N.V. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta. 2014;1837:418–426. doi: 10.1016/j.bbabio.2013.10.004. PubMed DOI
DeBerardinis R.J., Chandel N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016;2:e1600200. doi: 10.1126/sciadv.1600200. PubMed DOI PMC
Liberti M.V., Locasale J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends. Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Vaupel P., Multhoff G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021;599:1745–1757. doi: 10.1113/JP278810. PubMed DOI
Wotring J.W., McCarty S.M., Shafiq K., Zhang C.J., Nguyen T., Meyer S.R., Fursmidt R., Mirabelli C., Clasby M.C., Wobus C.E., et al. In Vitro Evaluation and Mitigation of Niclosamide’s Liabilities as a COVID-19 Treatment. Vaccines. 2022;10:1284. doi: 10.3390/vaccines10081284. PubMed DOI PMC
Enoch S.J., Schultz T.W., Popova I.G., Vasilev K.G., Mekenyan O.G. Development of a Decision Tree for Mitochondrial Dysfunction: Uncoupling of Oxidative Phosphorylation. Chem. Res. Toxicol. 2018;31:814–820. doi: 10.1021/acs.chemrestox.8b00132. PubMed DOI
Tollenaere J.P. Structure-activity relationships of three groups of uncouplers of oxidative phosphorylation: Salicylanilides, 2-trifluoromethylbenzimidazoles, and phenols. J. Med. Chem. 1973;16:791–796. doi: 10.1021/jm00265a011. PubMed DOI
Da Silva-Diz V., Cao B., Lancho O., Chiles E., Alasadi A., Aleksandrova M., Luo S., Singh A., Tao H., Augeri D., et al. A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. Blood. 2021;138:1317–1330. doi: 10.1182/blood.2020008955. PubMed DOI PMC
Stine Z.E., Schug Z.T., Salvino J.M., Dang C.V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022;21:141–162. doi: 10.1038/s41573-021-00339-6. PubMed DOI PMC
Khanim F.L., Merrick B.A., Giles H.V., Jankute M., Jackson J.B., Giles L.J., Birtwistle J., Bunce C.M., Drayson M.T. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production. Blood Cancer J. 2011;1:e39. doi: 10.1038/bcj.2011.38. PubMed DOI PMC
Jiang H., Greathouse R.L., Tiche S.J., Zhao M., He B., Li Y., Li A.M., Forgo B., Yip M., Li A., et al. Mitochondrial uncoupling induces epigenome remodeling and promotes differentiation in neuroblastoma. Cancer Res. 2022;83:1–14. doi: 10.1158/0008-5472.CAN-22-1029. PubMed DOI PMC
Corbett J.R., Goose A.J. A possible biochemical mode of action of the fasciolicides nitroxynil, hexachlorophene and oxyclozanide. Pestic. Sci. 1971;2:119–121. doi: 10.1002/ps.2780020307. PubMed DOI PMC
Bacon J.A., Ulrich R.G., Davis J.P., Thomas E.M., Johnson S.S., Conder G.A., Sangster N.C., Rothwell J.T., McCracken R.O., Lee B.H., et al. Comparative in vitro effects of closantel and selected beta-ketoamide anthelmintics on a gastrointestinal nematode and vertebrate liver cells. J. Vet. Pharmacol. Ther. 1998;21:190–198. doi: 10.1046/j.1365-2885.1998.00139.x. PubMed DOI
De Carvalho L.P., Darby C.M., Rhee K.Y., Nathan C. Nitazoxanide Disrupts Membrane Potential and Intrabacterial pH Homeostasis of Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2011;2:849–854. doi: 10.1021/ml200157f. PubMed DOI PMC
Rossignol J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral. Res. 2014;110:94–103. doi: 10.1016/j.antiviral.2014.07.014. PubMed DOI PMC
Ek F., Blom K., Selvin T., Rudfeldt J., Andersson C., Senkowski W., Brechot C., Nygren P., Larsson R., Jarvius M., et al. Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma. Sci. Rep. 2022;12:8943. doi: 10.1038/s41598-022-12519-4. PubMed DOI PMC
Wee P., Wang Z.X. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers. 2017;9:52. doi: 10.3390/cancers9050052. PubMed DOI PMC
Kjær I.M., Olsen D.A., Brandslund I., Bechmann T., Jakobsen E.H., Bogh S.B., Madsen J.S. Dysregulated EGFR pathway in serum in early-stage breast cancer patients: A case control study. Sci. Rep. 2020;10:6714. doi: 10.1038/s41598-020-63375-z. PubMed DOI PMC
Harrison P.T., Vyse S., Huang P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol. 2020;61:167–179. doi: 10.1016/j.semcancer.2019.09.015. PubMed DOI PMC
Byeon H.K., Ku M., Yang J. Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp. Mol. Med. 2019;51:1–14. doi: 10.1038/s12276-018-0202-2. PubMed DOI PMC
Abourehab M.A.S., Alqahtani A.M., Youssif B.G.M., Gouda A.M. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules. 2021;26:6677. doi: 10.3390/molecules26216677. PubMed DOI PMC
Wieduwilt M.J., Moasser M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008;65:1566–1584. doi: 10.1007/s00018-008-7440-8. PubMed DOI PMC
Kovacs E., Zorn J.A., Huang Y.J., Barros T., Kuriyan J. A Structural Perspective on the Regulation of the Epidermal Growth Factor Receptor. Annu. Rev. Biochem. 2015;84:739–764. doi: 10.1146/annurev-biochem-060614-034402. PubMed DOI PMC
Hedge C.N., Pierce J. A diazine heterocycle replaces a six-membered hydrogen-bonded array in the active site of scytalone dehydratase. Bioorg. Med. Chem. Lett. 1993;3:1605–1608. doi: 10.1016/S0960-894X(00)80026-8. DOI
Zhang L., Hou L., Sun W., Yu Z., Wang J., Gao H., Yang G. Synthesis of p-O-Alkyl Salicylanilide Derivatives as Novel EGFR Inhibitors. Drug Dev. Res. 2016;77:37–42. doi: 10.1002/ddr.21290. PubMed DOI
Hu M., Ye W., Li J., Zhong G., He G., Xu Q., Zhang Y. Synthesis and evaluation of salicylanilide derivatives as potential epidermal growth factor receptor inhibitors. Chem. Biol. Drug Des. 2015;85:280–289. doi: 10.1111/cbdd.12383. PubMed DOI
Zhu Z.W., Shi L., Ruan X.M., Yang Y., Li H.Q., Xu S.P., Zhu H.L. Synthesis and antiproliferative activities against Hep-G2 of salicylanide derivatives: Potent inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. J. Enzyme. Inhib. Med. Chem. 2011;26:37–45. doi: 10.3109/14756361003671060. PubMed DOI
Zuo M., Zheng Y.W., Lu S.M., Li Y., Zhang S.Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC-EGFR dual inhibitors. Bioorg. Med. Chem. 2012;20:4405–4412. doi: 10.1016/j.bmc.2012.05.034. PubMed DOI
Furtek S.L., Backos D.S., Matheson C.J., Reigan P. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. Acs Chem. Biol. 2016;11:308–318. doi: 10.1021/acschembio.5b00945. PubMed DOI
Yu H., Pardoll D., Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734. PubMed DOI PMC
Wake M.S., Watson C.J. STAT3 the oncogene—still eluding therapy? Febs. J. 2015;282:2600–2611. doi: 10.1111/febs.13285. PubMed DOI
Jarnicki A., Putoczki T., Ernst M. Stat3: Linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div. 2010;5:14. doi: 10.1186/1747-1028-5-14. PubMed DOI PMC
Hirano T., Ishihara K., Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19:2548–2556. doi: 10.1038/sj.onc.1203551. PubMed DOI
Li R., You S., Hu Z., Chen Z.G., Sica G.L., Khuri F.R., Curran W.J., Shin D.M., Deng X. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PLoS ONE. 2013;8:e74670. doi: 10.1371/journal.pone.0074670. PubMed DOI PMC
Lu L., Dong J.L., Wang L.L., Xia Q., Zhang D., Kim H.J., Yin T., Fan S.J., Shen Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene. 2018;37:5292–5304. doi: 10.1038/s41388-018-0340-y. PubMed DOI
You S., Li R., Park D., Xie M., Sica G.L., Cao Y., Xiao Z.Q., Deng X. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol. Cancer Ther. 2014;13:606–616. doi: 10.1158/1535-7163.MCT-13-0608. PubMed DOI PMC
Atsaves V., Tsesmetzis N., Chioureas D., Kis L., Leventaki V., Drakos E., Panaretakis T., Grander D., Medeiros L.J., Young K.H., et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia. 2017;31:1633–1637. doi: 10.1038/leu.2017.103. PubMed DOI
Luo F., Luo M., Rong Q.X., Zhang H., Chen Z., Wang F., Zhao H.Y., Fu L.W. Niclosamide, an antihelmintic drug, enhances efficacy of PD-1/PD-L1 immune checkpoint blockade in non-small cell lung cancer. J. Immunother. Cancer. 2019;7:245. doi: 10.1186/s40425-019-0733-7. PubMed DOI PMC
Wu M.M., Zhang Z., Tong C.W.S., Yan V.W., Cho W.C.S., To K.K.W. Repurposing of niclosamide as a STAT3 inhibitor to enhance the anticancer effect of chemotherapeutic drugs in treating colorectal cancer. Life Sci. 2020;262:118522. doi: 10.1016/j.lfs.2020.118522. PubMed DOI
Wang C., Zhou X., Xu H., Shi X., Zhao J., Yang M., Zhang L., Jin X., Hu Y., Li X., et al. Niclosamide Inhibits Cell Growth and Enhances Drug Sensitivity of Hepatocellular Carcinoma Cells via STAT3 Signaling Pathway. J. Cancer. 2018;9:4150–4155. doi: 10.7150/jca.26948. PubMed DOI PMC
Li X., Yang Z., Han Z., Wen Y., Ma Z., Wang Y. Niclosamide acts as a new inhibitor of vasculogenic mimicry in oral cancer through upregulation of miR-124 and downregulation of STAT3. Oncol. Rep. 2018;39:827–833. doi: 10.3892/or.2017.6146. PubMed DOI
Gyamfi J., Lee Y.H., Min B.S., Choi J. Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci. Rep. 2019;9:11336. doi: 10.1038/s41598-019-47707-2. PubMed DOI PMC
Cheng B., Morales L.D., Zhang Y., Mito S., Tsin A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PloS ONE. 2017;12:e0184324. doi: 10.1371/journal.pone.0184324. PubMed DOI PMC
Hu M., Ye W., Li J., Zhou P., Chu Z., Huang W. The salicylanilide derivatives inhibit signal transducer and activator of transcription 3 pathways in A549 lung cancer cells. Anticancer Drugs. 2016;27:41–47. doi: 10.1097/CAD.0000000000000303. PubMed DOI
Gargantilla M., Persoons L., Kauerová T., Del Río N., Daelemans D., Priego E.M., Kollar P., Pérez-Pérez M.J. Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3) Pharmaceuticals. 2022;15:835. doi: 10.3390/ph15070835. PubMed DOI PMC
Lü Z., Li X., Li K., Wang C., Du T., Huang W., Ji M., Li C., Xu F., Xu P., et al. Structure-Activity Study of Nitazoxanide Derivatives as Novel STAT3 Pathway Inhibitors. ACS Med. Chem. Lett. 2021;12:696–703. doi: 10.1021/acsmedchemlett.0c00544. PubMed DOI PMC
Chen M., Wang J., Lu J., Bond M.C., Ren X.R., Lyerly H.K., Barak L.S., Chen W. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry. 2009;48:10267–10274. doi: 10.1021/bi9009677. PubMed DOI PMC
Sack U., Walther W., Scudiero D., Selby M., Kobelt D., Lemm M., Fichtner I., Schlag P.M., Shoemaker R.H., Stein U. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J. Natl. Cancer Inst. 2011;103:1018–1036. doi: 10.1093/jnci/djr190. PubMed DOI
MacDonald B.T., Tamai K., He X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell. 2009;17:9–26. doi: 10.1016/j.devcel.2009.06.016. PubMed DOI PMC
Moon R.T. Wnt/beta-catenin pathway. Sci STKE. 2005;2005:cm1. doi: 10.1126/stke.2712005cm1. PubMed DOI
Clevers H., Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI
Pai S.G., Carneiro B.A., Mota J.M., Costa R., Leite C.A., Barroso-Sousa R., Kaplan J.B., Chae Y.K., Giles F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol. 2017;10:101. doi: 10.1186/s13045-017-0471-6. PubMed DOI PMC
Monin M.B., Krause P., Stelling R., Bocuk D., Niebert S., Klemm F., Pukrop T., Koenig S. The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J. Surg. Res. 2016;203:193–205. doi: 10.1016/j.jss.2016.03.051. PubMed DOI
Wang J., Ren X.R., Piao H., Zhao S., Osada T., Premont R.T., Mook R.A., Morse M.A., Lyerly H.K., Chen W. Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019;476:535–546. doi: 10.1042/BCJ20180385. PubMed DOI PMC
Osada T., Chen M., Yang X.Y., Spasojevic I., Vandeusen J.B., Hsu D., Clary B.M., Clay T.M., Chen W., Morse M.A., et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 2011;71:4172–4182. doi: 10.1158/0008-5472.CAN-10-3978. PubMed DOI PMC
Lu W., Lin C., Roberts M.J., Waud W.R., Piazza G.A., Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS ONE. 2011;6:e29290. doi: 10.1371/journal.pone.0029290. PubMed DOI PMC
Zhao J., He Q., Gong Z., Chen S., Cui L. Niclosamide suppresses renal cell carcinoma by inhibiting Wnt/β-catenin and inducing mitochondrial dysfunctions. Springerplus. 2016;5:1436. doi: 10.1186/s40064-016-3153-x. PubMed DOI PMC
Arend R.C., Londono-Joshi A.I., Samant R.S., Li Y., Conner M., Hidalgo B., Alvarez R.D., Landen C.N., Straughn J.M., Buchsbaum D.J. Inhibition of Wnt/beta-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol. Oncol. 2014;134:112–120. doi: 10.1016/j.ygyno.2014.04.005. PubMed DOI
Wang L.H., Xu M., Fu L.Q., Chen X.Y., Yang F. The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear β-catenin/c-Myc axis in OSCC. Sci. Rep. 2018;8:12776. doi: 10.1038/s41598-018-30692-3. PubMed DOI PMC
Zhou J., Jin B., Jin Y., Liu Y., Pan J. The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma. Theranostics. 2017;7:1447–1462. doi: 10.7150/thno.17451. PubMed DOI PMC
Ono M., Yin P., Navarro A., Moravek M.B., Coon V. J.S., Druschitz S.A., Gottardi C.J., Bulun S.E. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil. Steril. 2014;101:1441–1449. doi: 10.1016/j.fertnstert.2014.01.017. PubMed DOI PMC
Londoño-Joshi A.I., Arend R.C., Aristizabal L., Lu W., Samant R.S., Metge B.J., Hidalgo B., Grizzle W.E., Conner M., Forero-Torres A., et al. Effect of niclosamide on basal-like breast cancers. Mol. Cancer Ther. 2014;13:800–811. doi: 10.1158/1535-7163.MCT-13-0555. PubMed DOI PMC
King M.L., Lindberg M.E., Stodden G.R., Okuda H., Ebers S.D., Johnson A., Montag A., Lengyel E., MacLean Ii J.A., Hayashi K. WNT7A/β-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene. 2015;34:3452–3462. doi: 10.1038/onc.2014.277. PubMed DOI PMC
Hemmati-Dinarvand M., Ahmadvand H., Seghatoleslam A. Nitazoxanide and Cancer Drug Resistance: Targeting Wnt/β-catenin Signaling Pathway. Arch. Med. Res. 2022;53:263–270. doi: 10.1016/j.arcmed.2021.12.001. PubMed DOI
Ye C., Wei M., Huang H., Wang Y., Zhang L., Yang C., Huang Y., Luo J. Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways. Biol. Chem. 2022;403:929–943. doi: 10.1515/hsz-2022-0148. PubMed DOI
Hayden M.S., Ghosh S. Signaling to NF-kappaB. Genes. Dev. 2004;18:2195–2224. doi: 10.1101/gad.1228704. PubMed DOI
Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Ogawa H., Azuma M., Muto S., Nishioka Y., Honjo A., Tezuka T., Uehara H., Izumi K., Itai A., Sone S. IkappaB kinase beta inhibitor IMD-0354 suppresses airway remodelling in a Dermatophagoides pteronyssinus-sensitized mouse model of chronic asthma. Clin. Exp. Allergy. 2011;41:104–115. doi: 10.1111/j.1365-2222.2010.03564.x. PubMed DOI
Noha S.M., Atanasov A.G., Schuster D., Markt P., Fakhrudin N., Heiss E.H., Schrammel O., Rollinger J.M., Stuppner H., Dirsch V.M., et al. Discovery of a novel IKK-β inhibitor by ligand-based virtual screening techniques. Bioorg. Med. Chem. Lett. 2011;21:577–583. doi: 10.1016/j.bmcl.2010.10.051. PubMed DOI PMC
Jin Y., Lu Z., Ding K., Li J., Du X., Chen C., Sun X., Wu Y., Zhou J., Pan J. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–2527. doi: 10.1158/0008-5472.CAN-09-3950. PubMed DOI
Park M.H., Hong J.T. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells. 2016;5:15. doi: 10.3390/cells5020015. PubMed DOI PMC
Paul A., Edwards J., Pepper C., Mackay S. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Cells. 2018;7:176. doi: 10.3390/cells7100176. PubMed DOI PMC
Hua H., Kong Q., Zhang H., Wang J., Luo T., Jiang Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019;12:71. doi: 10.1186/s13045-019-0754-1. PubMed DOI PMC
Zou Z., Tao T., Li H., Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020;10:31. doi: 10.1186/s13578-020-00396-1. PubMed DOI PMC
Balgi A.D., Fonseca B.D., Donohue E., Tsang T.C., Lajoie P., Proud C.G., Nabi I.R., Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE. 2009;4:e7124. doi: 10.1371/journal.pone.0007124. PubMed DOI PMC
Fonseca B.D., Diering G.H., Bidinosti M.A., Dalal K., Alain T., Balgi A.D., Forestieri R., Nodwell M., Rajadurai C.V., Gunaratnam C., et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 2012;287:17530–17545. doi: 10.1074/jbc.M112.359638. PubMed DOI PMC
Chen L., Wang L., Shen H., Lin H., Li D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem. Biophys. Res. Commun. 2017;484:416–421. doi: 10.1016/j.bbrc.2017.01.140. PubMed DOI
Zhou B., Lin W., Long Y., Yang Y., Zhang H., Wu K., Chu Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal. Transduct. Target Ther. 2022;7:95. doi: 10.1038/s41392-022-00934-y. PubMed DOI PMC
Suliman M.A., Zhang Z., Na H., Ribeiro A.L., Zhang Y., Niang B., Hamid A.S., Zhang H., Xu L., Zuo Y. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family. Int. J. Mol. Med. 2016;38:776–784. doi: 10.3892/ijmm.2016.2689. PubMed DOI PMC
Zeyada M.S., Abdel-Rahman N., El-Karef A., Yahia S., El-Sherbiny I.M., Eissa L.A. Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sci. 2020;261:118458. doi: 10.1016/j.lfs.2020.118458. PubMed DOI
Loo E., Khalili P., Beuhler K., Siddiqi I., Vasef M.A. BRAF V600E Mutation Across Multiple Tumor Types: Correlation Between DNA-based Sequencing and Mutation-specific Immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 2018;26:709–713. doi: 10.1097/PAI.0000000000000516. PubMed DOI
Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15:122. doi: 10.1186/gb4184. PubMed DOI PMC
Hardcastle I.R., Golding B.T., Griffin R.J. Designing inhibitors of cyclin-dependent kinases. Annu. Rev. Pharmacol. Toxicol. 2002;42:325–348. doi: 10.1146/annurev.pharmtox.42.090601.125940. PubMed DOI
Vermeulen K., Van Bockstaele D.R., Berneman Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–149. doi: 10.1046/j.1365-2184.2003.00266.x. PubMed DOI PMC
Fassl A., Geng Y., Sicinski P. CDK4 and CDK6 kinases: From basic science to cancer therapy. Science. 2022;375:eabc1495. doi: 10.1126/science.abc1495. PubMed DOI PMC
Garcia-Gutierrez L., Delgado M.D., Leon J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes. 2019;10:244. doi: 10.3390/genes10030244. PubMed DOI PMC
Seviour E.G., Sehgal V., Lu Y., Luo Z., Moss T., Zhang F., Hill S.M., Liu W., Maiti S.N., Cooper L., et al. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 2016;35:691–701. doi: 10.1038/onc.2014.469. PubMed DOI PMC
Bretones G., Delgado M.D., León J. Myc and cell cycle control. Biochim. Biophys. Acta. 2015;1849:506–516. doi: 10.1016/j.bbagrm.2014.03.013. PubMed DOI
Wang H., Mannava S., Grachtchouk V., Zhuang D., Soengas M., Gudkov A., Prochownik E., Nikiforov M. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008;27:1905–1915. doi: 10.1038/sj.onc.1210823. PubMed DOI PMC
Buettner R., Mora L.B., Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 2002;8:945–954. PubMed
Kikuchi A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Commun. 2000;268:243–248. doi: 10.1006/bbrc.1999.1860. PubMed DOI
Zou S., Tong Q., Liu B., Huang W., Tian Y., Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020;19:145. doi: 10.1186/s12943-020-01258-7. PubMed DOI PMC
Marin-Acevedo J.A., Kimbrough E.O., Lou Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 2021;14:45. doi: 10.1186/s13045-021-01056-8. PubMed DOI PMC
He X., Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–669. doi: 10.1038/s41422-020-0343-4. PubMed DOI PMC
Harada D., Takigawa N., Kiura K. The Role of STAT3 in Non-Small Cell Lung Cancer. Cancers. 2014;6:708–722. doi: 10.3390/cancers6020708. PubMed DOI PMC
Guo Y., Zhu H., Xiao Y., Guo H., Lin M., Yuan Z., Yang X., Huang Y., Zhang Q., Bai Y. The anthelmintic drug niclosamide induces GSK-β-mediated β-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability and suppress pancreatic cancer progression. Cell Death Dis. 2022;13:112. doi: 10.1038/s41419-022-04573-7. PubMed DOI PMC
Zhang X., Zhang Y., Zhang T., Zhang J., Wu B. Significantly enhanced bioavailability of niclosamide through submicron lipid emulsions with or without PEG-lipid: A comparative study. J. Microencapsul. 2015;32:496–502. doi: 10.3109/02652048.2015.1057251. PubMed DOI
Hatamipour M., Jaafari M.R., Momtazi-Borojeni A.A., Ramezani M., Sahebkar A. Nanoliposomal Encapsulation Enhances. Anticancer Agents Med. Chem. 2019;19:1618–1626. doi: 10.2174/1871520619666190705120011. PubMed DOI
Parikh M., Liu C., Wu C.Y., Evans C.P., Dall’Era M., Robles D., Lara P.N., Agarwal N., Gao A.C., Pan C.X. Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci. Rep. 2021;11:6377. doi: 10.1038/s41598-021-85969-x. PubMed DOI PMC
Shah S., Famta P., Fernandes V., Bagasariya D., Charankumar K., Kumar Khatri D., Bala Singh S., Srivastava S. Quality by design steered development of Niclosamide loaded liposomal thermogel for Melanoma: In vitro and Ex vivo evaluation. Eur. J. Pharm. Biopharm. 2022;180:119–136. doi: 10.1016/j.ejpb.2022.09.024. PubMed DOI
Tsume Y., Mudie D.M., Langguth P., Amidon G.E., Amidon G.L. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci. 2014;57:152–163. doi: 10.1016/j.ejps.2014.01.009. PubMed DOI PMC
Pardhi V., Chavan R.B., Thipparaboina R., Thatikonda S., Naidu V., Shastri N.R. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int. J. Pharm. 2017;528:202–214. doi: 10.1016/j.ijpharm.2017.06.007. PubMed DOI
Lodagekar A., Borkar R.M., Thatikonda S., Chavan R.B., Naidu V.G.M., Shastri N.R., Srinivas R., Chella N. Formulation and evaluation of cyclodextrin complexes for improved anticancer activity of repurposed drug: Niclosamide. Carbohydr. Polym. 2019;212:252–259. doi: 10.1016/j.carbpol.2019.02.041. PubMed DOI
Meng F., Jing Z., Ferreira R., Ren P., Zhang F. Investigating the Association Mechanism between Rafoxanide and Povidone. Langmuir. 2018;34:13971–13978. doi: 10.1021/acs.langmuir.8b03174. PubMed DOI
Vega A.F., Medina-Torres L., Calderas F., Gracia-Mora J., Bernad-Bernad M. Closantel nano-encapsulated polyvinyl alcohol (PVA) solutions. Pharm. Dev. Technol. 2016;21:636–641. doi: 10.3109/10837450.2015.1035725. PubMed DOI
Glisoni R.J., Sosnik A. Encapsulation of the antimicrobial and immunomodulator agent nitazoxanide within polymeric micelles. J. Nanosci. Nanotechnol. 2014;14:4670–4682. doi: 10.1166/jnn.2014.8647. PubMed DOI
Barbosa E.J., Löbenberg R., de Araujo G.L.B., Bou-Chacra N.A. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur. J. Pharm. Biopharm. 2019;141:58–69. doi: 10.1016/j.ejpb.2019.05.004. PubMed DOI
Jara M.O., Warnken Z.N., Williams R.O. Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics. 2021;13:97. doi: 10.3390/pharmaceutics13010097. PubMed DOI PMC
Reddy G.B., Kerr D.L., Spasojevic I., Tovmasyan A., Hsu D.S., Brigman B.E., Somarelli J.A., Needham D., Eward W.C. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol. Cancer Ther. 2020;19:1448–1461. doi: 10.1158/1535-7163.MCT-19-0689. PubMed DOI
Sood S., Maddiboyina B., Rawat P., Garg A.K., Foudah A.I., Alam A., Aldawsari H.M., Riadi Y., Singh S., Kesharwani P. Enhancing the solubility of nitazoxanide with solid dispersions technique: Formulation, evaluation, and cytotoxicity study. J. Biomater. Sci. Polym. Ed. 2021;32:477–487. doi: 10.1080/09205063.2020.1844506. PubMed DOI