Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31011161
PubMed Central
PMC6476888
DOI
10.1038/s41598-019-42595-y
PII: 10.1038/s41598-019-42595-y
Knihovny.cz E-zdroje
- MeSH
- apoptóza účinky léků MeSH
- DNA metabolismus MeSH
- doxorubicin farmakologie MeSH
- HCT116 buňky MeSH
- interkalátory farmakologie MeSH
- knihovny malých molekul chemie farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- naftoly chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- racionální návrh léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-naphthol MeSH Prohlížeč
- calf thymus DNA MeSH Prohlížeč
- DNA MeSH
- doxorubicin MeSH
- interkalátory MeSH
- knihovny malých molekul MeSH
- nádorový supresorový protein p53 MeSH
- naftoly MeSH
- protinádorové látky MeSH
A series of 116 small-molecule 1-hydroxynaphthalene-2-carboxanilides was designed based on the fragment-based approach and was synthesized according to the microwave-assisted protocol. The biological activity of all of the compounds was tested on human colon carcinoma cell lines including a deleted TP53 tumor suppressor gene. The mechanism of activity was studied according to the p53 status in the cell. Several compounds revealed a good to excellent activity that was similar to or better than the standard anticancer drugs. Some of these appeared to be more active against the p53 null cells than their wild-type counterparts. Intercalating the properties of these compounds could be responsible for their mechanism of action.
Global Change Research Institute CAS Belidla 986 4a Brno 603 00 Czech Republic
Institute of Chemistry University of Silesia 75 Pułku Piechoty 1a 41 500 Chorzów Poland
Zobrazit více v PubMed
Foo J, Michor F. The evolution of accuired resistance to anti-cancer therapy. J. Theor Biol. 2014;355:10–20. doi: 10.1016/j.jtbi.2014.02.025. PubMed DOI PMC
Dokmanovic M, Wu WJ. Monitoring Trastuzumab Resistance and Cardiotoxicity: A Tale of Personalized Medicine. Adv. Clin. Chem. 2015;70:95–130. doi: 10.1016/bs.acc.2015.03.006. PubMed DOI
Krátký M, Vinšová J. Antiviral activity of substituted salicylanilides–a review. Mini Rev. Med. Chem. 2011;11:956–67. doi: 10.2174/138955711797068382. PubMed DOI
Krátký M, Vinsová J. Salicylanilide ester prodrugs as potential antimicrobial agents–a review. Curr. Pharm. Des. 2011;17:3494–505. doi: 10.2174/138161211798194521. PubMed DOI
Polanski J, Kurczyk A, Bak A, Musiol R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–45. doi: 10.2174/092986712800167356. PubMed DOI
Gonec T, et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Zadrazilova I, et al. In Vitro Bactericidal Activity of 4- and 5-Chloro-2-hydroxy- N -[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. Biomed Res. Int. 2015;2015:1–8. doi: 10.1155/2015/349534. PubMed DOI PMC
Pospisilova, S. et al. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg. Med. Chem. Lett., 10.1016/j.bmcl.2018.05.011 (2018). PubMed
Krátký M, Vinšová J, Novotná E, Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014;53:1–9. doi: 10.1016/j.ejps.2013.12.001. PubMed DOI
Kos J, et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Gonec T, et al. Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Zadrazilova I, et al. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Pauk K, et al. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Gonec T, et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Imramovský A, Vinšová J, Férriz JM, Buchta V, Jampílek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI
Krátký M, Vinšová J. Antifungal Activity of Salicylanilides and Their Esters with 4-(Trifluoromethyl)benzoic Acid. Molecules. 2012;17:9426–42. doi: 10.3390/molecules17089426. PubMed DOI PMC
Kos J, Kapustikova I, Clements C, Gray AI, Jampilek J. 3-Hydroxynaphthalene-2-carboxanilides and their antitrypanosomal activity. Monatshefte für Chemie - Chem. Mon. 2018;149:887–892. doi: 10.1007/s00706-017-2099-1. DOI
Gonec T, et al. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC
Gonec T, Kralova K, Pesko M, Jampilek J. Antimycobacterial N -alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI
Kralova K, Perina M, Waisser K, Jampilek J. Structure-Activity Relationships of N-benzylsalicylamides for Inhibition of Photosynthetic Electron Transport. Med. Chem. (Los. Angeles). 2015;11:156–164. PubMed
Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed
Larsen AR, et al. Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor. Mol. Cancer Ther. 2015;14:3–13. doi: 10.1158/1535-7163.MCT-14-0755-T. PubMed DOI PMC
Balgi AD, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 2009;4:e7124. doi: 10.1371/journal.pone.0007124. PubMed DOI PMC
Mook RA, et al. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure. Bioorg. Med. Chem. 2015;23:5829–5838. doi: 10.1016/j.bmc.2015.07.001. PubMed DOI PMC
Li Y, et al. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14. doi: 10.1016/j.canlet.2014.04.003. PubMed DOI PMC
Ye T, et al. The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS One. 2014;9:e85887. doi: 10.1371/journal.pone.0085887. PubMed DOI PMC
Sack U, et al. Novel effect of antihelminthic niclosamide on s100a4-mediated metastatic progression in colon cancer. J. Natl. Cancer Inst. 2011;103:1018–1036. doi: 10.1093/jnci/djr190. PubMed DOI
Li R, et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol. Cancer Ther. 2013;12:2200–12. doi: 10.1158/1535-7163.MCT-13-0095. PubMed DOI PMC
Hamdoun S, Jung P, Efferth T. Drug Repurposing of the Anthelmintic Niclosamide to Treat Multidrug-Resistant Leukemia. Front. Pharmacol. 2017;8:110. doi: 10.3389/fphar.2017.00110. PubMed DOI PMC
Liu C, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 2014;20:3198–3210. doi: 10.1158/1078-0432.CCR-13-3296. PubMed DOI PMC
Li Y, et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9. doi: 10.1158/0008-5472.CAN-12-3630. PubMed DOI PMC
Burton JD, Goldenberg DM, Blumenthal RD. Potential of peroxisome proliferator-activated receptor gamma antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res. 2008;2008:494161. doi: 10.1155/2008/494161. PubMed DOI PMC
Zaytseva YY, Wallis NK, Southard RC, Kilgore MW. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and -independent mechanisms. Anticancer Res. 2011;31:813–23. PubMed
Koch DC, et al. Anti-androgen flutamide suppresses hepatocellular carcinoma cell proliferation via the aryl hydrocarbon receptor mediated induction of transforming growth factor-β1. Oncogene. 2015;34:6092–104. doi: 10.1038/onc.2015.55. PubMed DOI
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010;17:421–433. doi: 10.1016/j.chembiol.2010.04.012. PubMed DOI PMC
Correia I, Arantes-Rodrigues R, Pinto-Leite R, Gaivão I. Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line. J. Toxicol. Environ. Health. A. 2014;77:916–23. doi: 10.1080/15287394.2014.911131. PubMed DOI
Kim M-S, et al. Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev. Res. (Phila). 2014;7:236–45. doi: 10.1158/1940-6207.CAPR-13-0288. PubMed DOI PMC
Husain MA, Yaseen Z, Rehman SU, Sarwar T, Tabish M. Naproxen intercalates with DNA and causes photocleavage through ROS generation. FEBS J. 2013;280:6569–80. doi: 10.1111/febs.12558. PubMed DOI
Kauerova T, Kos J, Gonec T, Jampilek J, Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Imramovsky A, et al. Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Imramovský A, et al. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Gonec T, et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC
Otevrel J, et al. Investigating the spectrum of biological activity of ring- substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Serda M, et al. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC
Mrozek-Wilczkiewicz A, et al. Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones. ACS Med. Chem. Lett. 2014;5:336–339. doi: 10.1021/ml400422a. PubMed DOI PMC
Kurczyk A, et al. Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. J. Chem. Inf. Model. 2015;55:2168–2177. doi: 10.1021/acs.jcim.5b00295. PubMed DOI
Loupy, A. Microwaves in Organic Synthesis. Microwaves in Organic Synthesis: Third Edition2 (2012).
Gawande MB, Shelke SN, Zboril R, Varma RS. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI
Verma S, Jain SL. Nanocrystalline zinc peroxide mediated unprecedented nitrene transfer: an expeditious access to N-tosylaziridines. RSC Adv. 2013;3:19830. doi: 10.1039/c3ra43878c. DOI
Kumar N, Verma S, Jain SL. Combined Thiourea Dioxide–Water: An Effective Reusable Catalyst for the Synthesis of Polyhydroquinolines via Hantzsch Multicomponent Coupling. Chem. Lett. 2012;41:920–922. doi: 10.1246/cl.2012.920. DOI
Verma S, Kumar S, Jain SL, Sain B. Thiourea dioxide promoted efficient organocatalytic one-pot synthesis of a library of novel heterocyclic compounds. Org. Biomol. Chem. 2011;9:6943–6948. doi: 10.1039/c1ob05818e. PubMed DOI
Musiol R, Podeszwa B, Finster J, Niedbala H, Polanski J. An Efficient Microwave-Assisted Synthesis of Structurally Diverse Styrylquinolines. Monatshefte für Chemie - Chem. Mon. 2006;137:1211–1217. doi: 10.1007/s00706-006-0513-1. DOI
Musiol R, Tyman-Szram B, Polanski J. Microwave-Assisted Heterocyclic Chemistry for the Undergraduate Organic Laboratory. J. Chem. Educ. 2006;83:632–633. doi: 10.1021/ed083p632. DOI
Cieslik W, Serda M, Musiol R. Microwave-Assisted 1,3-dipolar Cycloadditions to Nitrogen Containing Heterocycles. Curr. Org. Chem. 2015;19:1410–1427. doi: 10.2174/1385272819666150518103414. DOI
Verma S, Jain SL, Sain B. PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Lett. 2010;51:6897–6900. doi: 10.1016/j.tetlet.2010.10.124. DOI
Musiol R, Girek T. Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Cent. Eur. J. Chem. 2005;3:742–746.
Verma S, Pandita S, Jain SL. Microwave assisted synthesis of nitro phenols from the reaction of phenols with urea nitrate under acid-free conditions. Tetrahedron Lett. 2014;55:1320–1322. doi: 10.1016/j.tetlet.2013.12.114. DOI
Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov. 2006;5:51–63. doi: 10.1038/nrd1926. PubMed DOI
Lew A, Krutzik PO, Hart ME, Chamberlin AR. Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J. Comb. Chem. 2002;4:95–105. doi: 10.1021/cc010048o. PubMed DOI
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010;2:a001008. doi: 10.1101/cshperspect.a001008. PubMed DOI PMC
Muller PAJ, Vousden KH. P53 Mutations in Cancer. Nat. Cell Biol. 2013;15:2–8. doi: 10.1038/ncb2641. PubMed DOI
Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014;13:217–36. doi: 10.1038/nrd4236. PubMed DOI
Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65. doi: 10.1038/sj.onc.1210302. PubMed DOI
Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014;120:774–780. doi: 10.1002/cncr.28501. PubMed DOI PMC
Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 2004;4:92. doi: 10.1186/1471-2407-4-92. PubMed DOI PMC
Dunkern TR, Wedemeyer I, Baumgärtner M, Fritz G, Kaina B. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair (Amst). 2003;2:49–60. doi: 10.1016/S1568-7864(02)00185-4. PubMed DOI
Mrozek-Wilczkiewicz A, et al. Design, Synthesis and In Vitro Activity of Anticancer Styrylquinolines. The p53 Independent Mechanism of Action. PLoS One. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC
Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010;29:476–488. PubMed
Bak A, Kozik V, Smolinski A, Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI
Liu K, Liu P, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 2015;21:15–20. doi: 10.12659/MSMBR.895463. PubMed DOI PMC
Banks TM, Clay SF, Glover SA, Schumacher RR. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator. Org. Biomol. Chem. 2016;14:3699–714. doi: 10.1039/C6OB00162A. PubMed DOI
Johnson CA, et al. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes. Bioorganic. Med. Chem. 2015;23:3586–3591. doi: 10.1016/j.bmc.2015.04.030. PubMed DOI
Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem. Pharmacol. 2012;83:1049–1062. doi: 10.1016/j.bcp.2011.12.026. PubMed DOI PMC
Haupt S. Apoptosis - the p53 network. J. Cell Sci. 2003;116:4077–4085. doi: 10.1242/jcs.00739. PubMed DOI
Hall P, Lane DP. Tumour suppressors: A developing role for p53? Curr. Biol. 1997;7:R144–R147. doi: 10.1016/S0960-9822(97)70074-5. PubMed DOI
Lu X, Errington J, Curtin N, Lunec J, Newell D. The impact of p53 status on cellular sensitivity to antifolate drugs. Clin. cancer Res. 2001;7:2114–2123. PubMed
Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 2008;44:1529–35. doi: 10.1016/j.freeradbiomed.2008.01.011. PubMed DOI PMC
Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta. 1998;1366:139–49. doi: 10.1016/S0005-2728(98)00109-1. PubMed DOI
Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol. 2005;83:354–364. doi: 10.1139/o05-038. PubMed DOI
Boulares H, et al. Role of Poly (ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis. J. Biol. Chem. 1999;274:22932–22940. doi: 10.1074/jbc.274.33.22932. PubMed DOI
Yang Y, Zhao S, Song J. Caspase-dependent apoptosis and -independent poly(ADP-ribose) polymerase cleavage induced by transforming growth factor β1. Int. J. Biochem. Cell Biol. 2004;36:223–234. doi: 10.1016/S1357-2725(03)00215-2. PubMed DOI
Lanni JS, Lowe SW, Licitra EJ, Liu JO, Jacks T. P53-Independent Apoptosis Induced By Paclitaxel Through an Indirect Mechanism. Proc Natl Acad Sci USA. 1997;94:9679–9683. doi: 10.1073/pnas.94.18.9679. PubMed DOI PMC
Abeysinghe RD, et al. P53-Independent Apoptosis Mediated By Tachpyridine, an Anti-Cancer Iron Chelator. Carcinogenesis. 2001;22:1607–1614. doi: 10.1093/carcin/22.10.1607. PubMed DOI
Yerlikaya A, Okur E, Ulukaya E. The p53-independent induction of apoptosis in breast cancer cells in response to proteasome inhibitor bortezomib. Tumor Biol. 2012;33:1385–1392. doi: 10.1007/s13277-012-0386-3. PubMed DOI
Lukin DJ, Carvajal L, Liu W, Resnick-Silverman L, Manfredi JJ. p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol. Cancer Res. 2015;13:16–28. doi: 10.1158/1541-7786.MCR-14-0177. PubMed DOI PMC
Rudolf E, Červinka M. Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol. Vitr. 2011;25:1302–1309. doi: 10.1016/j.tiv.2011.04.019. PubMed DOI
Dalmases, A., González, I. & Menendez, S. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-kB target genes in human breast cancer. Oncotarget5 (2013). PubMed PMC
Gonec T, et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–41. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Bunz F, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–501. doi: 10.1126/science.282.5393.1497. PubMed DOI
Kubinyi H. QSAR and 3D QSAR in drug design Part 1: methodology. Drug Discov. Today. 1997;2:457–467. doi: 10.1016/S1359-6446(97)01079-9. DOI
Polanski J, Gieleciak R, Magdziarz T, Bak A. GRID Formalism for the Comparative Molecular Surface Analysis: Application to the CoMFA Benchmark Steroids, Azo Dyes, and HEPT Derivatives. J. Chem. Inf. Comput. Sci. 2004;44:1423–1435. doi: 10.1021/ci049960l. PubMed DOI
Pizova H, et al. Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules. 2017;22:1969. doi: 10.3390/molecules22111969. PubMed DOI PMC
Stanton DT. QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Comput. Aided. Drug Des. 2012;8:107–27. doi: 10.2174/157340912800492357. PubMed DOI
Gonzalez M, Teran C, Saiz-Urra L, Teijeira M. Variable Selection Methods in QSAR: An Overview. Curr. Top. Med. Chem. 2008;8:1606–1627. doi: 10.2174/156802608786786552. PubMed DOI
Centner V, et al. Elimination of Uninformative Variables for Multivariate Calibration. Anal. Chem. 1996;68:3851–3858. doi: 10.1021/ac960321m. PubMed DOI
Salicylanilides and Their Anticancer Properties