Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31011161
Odkazy

PubMed 31011161
PubMed Central PMC6476888
DOI 10.1038/s41598-019-42595-y
PII: 10.1038/s41598-019-42595-y
Knihovny.cz E-zdroje

A series of 116 small-molecule 1-hydroxynaphthalene-2-carboxanilides was designed based on the fragment-based approach and was synthesized according to the microwave-assisted protocol. The biological activity of all of the compounds was tested on human colon carcinoma cell lines including a deleted TP53 tumor suppressor gene. The mechanism of activity was studied according to the p53 status in the cell. Several compounds revealed a good to excellent activity that was similar to or better than the standard anticancer drugs. Some of these appeared to be more active against the p53 null cells than their wild-type counterparts. Intercalating the properties of these compounds could be responsible for their mechanism of action.

Zobrazit více v PubMed

Foo J, Michor F. The evolution of accuired resistance to anti-cancer therapy. J. Theor Biol. 2014;355:10–20. doi: 10.1016/j.jtbi.2014.02.025. PubMed DOI PMC

Dokmanovic M, Wu WJ. Monitoring Trastuzumab Resistance and Cardiotoxicity: A Tale of Personalized Medicine. Adv. Clin. Chem. 2015;70:95–130. doi: 10.1016/bs.acc.2015.03.006. PubMed DOI

Krátký M, Vinšová J. Antiviral activity of substituted salicylanilides–a review. Mini Rev. Med. Chem. 2011;11:956–67. doi: 10.2174/138955711797068382. PubMed DOI

Krátký M, Vinsová J. Salicylanilide ester prodrugs as potential antimicrobial agents–a review. Curr. Pharm. Des. 2011;17:3494–505. doi: 10.2174/138161211798194521. PubMed DOI

Polanski J, Kurczyk A, Bak A, Musiol R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–45. doi: 10.2174/092986712800167356. PubMed DOI

Gonec T, et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Zadrazilova I, et al. In Vitro Bactericidal Activity of 4- and 5-Chloro-2-hydroxy- N -[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. Biomed Res. Int. 2015;2015:1–8. doi: 10.1155/2015/349534. PubMed DOI PMC

Pospisilova, S. et al. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg. Med. Chem. Lett., 10.1016/j.bmcl.2018.05.011 (2018). PubMed

Krátký M, Vinšová J, Novotná E, Stolaříková J. Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. Eur. J. Pharm. Sci. 2014;53:1–9. doi: 10.1016/j.ejps.2013.12.001. PubMed DOI

Kos J, et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI

Gonec T, et al. Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

Zadrazilova I, et al. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Pauk K, et al. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Gonec T, et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC

Imramovský A, Vinšová J, Férriz JM, Buchta V, Jampílek J. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:348–351. doi: 10.1016/j.bmcl.2008.11.080. PubMed DOI

Krátký M, Vinšová J. Antifungal Activity of Salicylanilides and Their Esters with 4-(Trifluoromethyl)benzoic Acid. Molecules. 2012;17:9426–42. doi: 10.3390/molecules17089426. PubMed DOI PMC

Kos J, Kapustikova I, Clements C, Gray AI, Jampilek J. 3-Hydroxynaphthalene-2-carboxanilides and their antitrypanosomal activity. Monatshefte für Chemie - Chem. Mon. 2018;149:887–892. doi: 10.1007/s00706-017-2099-1. DOI

Gonec T, et al. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC

Gonec T, Kralova K, Pesko M, Jampilek J. Antimycobacterial N -alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI

Kralova K, Perina M, Waisser K, Jampilek J. Structure-Activity Relationships of N-benzylsalicylamides for Inhibition of Photosynthetic Electron Transport. Med. Chem. (Los. Angeles). 2015;11:156–164. PubMed

Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed

Larsen AR, et al. Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor. Mol. Cancer Ther. 2015;14:3–13. doi: 10.1158/1535-7163.MCT-14-0755-T. PubMed DOI PMC

Balgi AD, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 2009;4:e7124. doi: 10.1371/journal.pone.0007124. PubMed DOI PMC

Mook RA, et al. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure. Bioorg. Med. Chem. 2015;23:5829–5838. doi: 10.1016/j.bmc.2015.07.001. PubMed DOI PMC

Li Y, et al. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14. doi: 10.1016/j.canlet.2014.04.003. PubMed DOI PMC

Ye T, et al. The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS One. 2014;9:e85887. doi: 10.1371/journal.pone.0085887. PubMed DOI PMC

Sack U, et al. Novel effect of antihelminthic niclosamide on s100a4-mediated metastatic progression in colon cancer. J. Natl. Cancer Inst. 2011;103:1018–1036. doi: 10.1093/jnci/djr190. PubMed DOI

Li R, et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol. Cancer Ther. 2013;12:2200–12. doi: 10.1158/1535-7163.MCT-13-0095. PubMed DOI PMC

Hamdoun S, Jung P, Efferth T. Drug Repurposing of the Anthelmintic Niclosamide to Treat Multidrug-Resistant Leukemia. Front. Pharmacol. 2017;8:110. doi: 10.3389/fphar.2017.00110. PubMed DOI PMC

Liu C, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 2014;20:3198–3210. doi: 10.1158/1078-0432.CCR-13-3296. PubMed DOI PMC

Li Y, et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9. doi: 10.1158/0008-5472.CAN-12-3630. PubMed DOI PMC

Burton JD, Goldenberg DM, Blumenthal RD. Potential of peroxisome proliferator-activated receptor gamma antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res. 2008;2008:494161. doi: 10.1155/2008/494161. PubMed DOI PMC

Zaytseva YY, Wallis NK, Southard RC, Kilgore MW. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and -independent mechanisms. Anticancer Res. 2011;31:813–23. PubMed

Koch DC, et al. Anti-androgen flutamide suppresses hepatocellular carcinoma cell proliferation via the aryl hydrocarbon receptor mediated induction of transforming growth factor-β1. Oncogene. 2015;34:6092–104. doi: 10.1038/onc.2015.55. PubMed DOI

Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010;17:421–433. doi: 10.1016/j.chembiol.2010.04.012. PubMed DOI PMC

Correia I, Arantes-Rodrigues R, Pinto-Leite R, Gaivão I. Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line. J. Toxicol. Environ. Health. A. 2014;77:916–23. doi: 10.1080/15287394.2014.911131. PubMed DOI

Kim M-S, et al. Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev. Res. (Phila). 2014;7:236–45. doi: 10.1158/1940-6207.CAPR-13-0288. PubMed DOI PMC

Husain MA, Yaseen Z, Rehman SU, Sarwar T, Tabish M. Naproxen intercalates with DNA and causes photocleavage through ROS generation. FEBS J. 2013;280:6569–80. doi: 10.1111/febs.12558. PubMed DOI

Kauerova T, Kos J, Gonec T, Jampilek J, Kollar P. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC

Imramovsky A, et al. Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Imramovský A, et al. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Gonec T, et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC

Otevrel J, et al. Investigating the spectrum of biological activity of ring- substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Serda M, et al. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One. 2014;9:e110291. doi: 10.1371/journal.pone.0110291. PubMed DOI PMC

Mrozek-Wilczkiewicz A, et al. Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones. ACS Med. Chem. Lett. 2014;5:336–339. doi: 10.1021/ml400422a. PubMed DOI PMC

Kurczyk A, et al. Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. J. Chem. Inf. Model. 2015;55:2168–2177. doi: 10.1021/acs.jcim.5b00295. PubMed DOI

Loupy, A. Microwaves in Organic Synthesis. Microwaves in Organic Synthesis: Third Edition2 (2012).

Gawande MB, Shelke SN, Zboril R, Varma RS. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014;47:1338–1348. doi: 10.1021/ar400309b. PubMed DOI

Verma S, Jain SL. Nanocrystalline zinc peroxide mediated unprecedented nitrene transfer: an expeditious access to N-tosylaziridines. RSC Adv. 2013;3:19830. doi: 10.1039/c3ra43878c. DOI

Kumar N, Verma S, Jain SL. Combined Thiourea Dioxide–Water: An Effective Reusable Catalyst for the Synthesis of Polyhydroquinolines via Hantzsch Multicomponent Coupling. Chem. Lett. 2012;41:920–922. doi: 10.1246/cl.2012.920. DOI

Verma S, Kumar S, Jain SL, Sain B. Thiourea dioxide promoted efficient organocatalytic one-pot synthesis of a library of novel heterocyclic compounds. Org. Biomol. Chem. 2011;9:6943–6948. doi: 10.1039/c1ob05818e. PubMed DOI

Musiol R, Podeszwa B, Finster J, Niedbala H, Polanski J. An Efficient Microwave-Assisted Synthesis of Structurally Diverse Styrylquinolines. Monatshefte für Chemie - Chem. Mon. 2006;137:1211–1217. doi: 10.1007/s00706-006-0513-1. DOI

Musiol R, Tyman-Szram B, Polanski J. Microwave-Assisted Heterocyclic Chemistry for the Undergraduate Organic Laboratory. J. Chem. Educ. 2006;83:632–633. doi: 10.1021/ed083p632. DOI

Cieslik W, Serda M, Musiol R. Microwave-Assisted 1,3-dipolar Cycloadditions to Nitrogen Containing Heterocycles. Curr. Org. Chem. 2015;19:1410–1427. doi: 10.2174/1385272819666150518103414. DOI

Verma S, Jain SL, Sain B. PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Lett. 2010;51:6897–6900. doi: 10.1016/j.tetlet.2010.10.124. DOI

Musiol R, Girek T. Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Cent. Eur. J. Chem. 2005;3:742–746.

Verma S, Pandita S, Jain SL. Microwave assisted synthesis of nitro phenols from the reaction of phenols with urea nitrate under acid-free conditions. Tetrahedron Lett. 2014;55:1320–1322. doi: 10.1016/j.tetlet.2013.12.114. DOI

Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov. 2006;5:51–63. doi: 10.1038/nrd1926. PubMed DOI

Lew A, Krutzik PO, Hart ME, Chamberlin AR. Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J. Comb. Chem. 2002;4:95–105. doi: 10.1021/cc010048o. PubMed DOI

Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010;2:a001008. doi: 10.1101/cshperspect.a001008. PubMed DOI PMC

Muller PAJ, Vousden KH. P53 Mutations in Cancer. Nat. Cell Biol. 2013;15:2–8. doi: 10.1038/ncb2641. PubMed DOI

Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 2014;13:217–36. doi: 10.1038/nrd4236. PubMed DOI

Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65. doi: 10.1038/sj.onc.1210302. PubMed DOI

Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014;120:774–780. doi: 10.1002/cncr.28501. PubMed DOI PMC

Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 2004;4:92. doi: 10.1186/1471-2407-4-92. PubMed DOI PMC

Dunkern TR, Wedemeyer I, Baumgärtner M, Fritz G, Kaina B. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair (Amst). 2003;2:49–60. doi: 10.1016/S1568-7864(02)00185-4. PubMed DOI

Mrozek-Wilczkiewicz A, et al. Design, Synthesis and In Vitro Activity of Anticancer Styrylquinolines. The p53 Independent Mechanism of Action. PLoS One. 2015;10:e0142678. doi: 10.1371/journal.pone.0142678. PubMed DOI PMC

Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010;29:476–488. PubMed

Bak A, Kozik V, Smolinski A, Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Liu K, Liu P, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 2015;21:15–20. doi: 10.12659/MSMBR.895463. PubMed DOI PMC

Banks TM, Clay SF, Glover SA, Schumacher RR. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator. Org. Biomol. Chem. 2016;14:3699–714. doi: 10.1039/C6OB00162A. PubMed DOI

Johnson CA, et al. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes. Bioorganic. Med. Chem. 2015;23:3586–3591. doi: 10.1016/j.bmc.2015.04.030. PubMed DOI

Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem. Pharmacol. 2012;83:1049–1062. doi: 10.1016/j.bcp.2011.12.026. PubMed DOI PMC

Haupt S. Apoptosis - the p53 network. J. Cell Sci. 2003;116:4077–4085. doi: 10.1242/jcs.00739. PubMed DOI

Hall P, Lane DP. Tumour suppressors: A developing role for p53? Curr. Biol. 1997;7:R144–R147. doi: 10.1016/S0960-9822(97)70074-5. PubMed DOI

Lu X, Errington J, Curtin N, Lunec J, Newell D. The impact of p53 status on cellular sensitivity to antifolate drugs. Clin. cancer Res. 2001;7:2114–2123. PubMed

Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 2008;44:1529–35. doi: 10.1016/j.freeradbiomed.2008.01.011. PubMed DOI PMC

Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta. 1998;1366:139–49. doi: 10.1016/S0005-2728(98)00109-1. PubMed DOI

Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol. 2005;83:354–364. doi: 10.1139/o05-038. PubMed DOI

Boulares H, et al. Role of Poly (ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis. J. Biol. Chem. 1999;274:22932–22940. doi: 10.1074/jbc.274.33.22932. PubMed DOI

Yang Y, Zhao S, Song J. Caspase-dependent apoptosis and -independent poly(ADP-ribose) polymerase cleavage induced by transforming growth factor β1. Int. J. Biochem. Cell Biol. 2004;36:223–234. doi: 10.1016/S1357-2725(03)00215-2. PubMed DOI

Lanni JS, Lowe SW, Licitra EJ, Liu JO, Jacks T. P53-Independent Apoptosis Induced By Paclitaxel Through an Indirect Mechanism. Proc Natl Acad Sci USA. 1997;94:9679–9683. doi: 10.1073/pnas.94.18.9679. PubMed DOI PMC

Abeysinghe RD, et al. P53-Independent Apoptosis Mediated By Tachpyridine, an Anti-Cancer Iron Chelator. Carcinogenesis. 2001;22:1607–1614. doi: 10.1093/carcin/22.10.1607. PubMed DOI

Yerlikaya A, Okur E, Ulukaya E. The p53-independent induction of apoptosis in breast cancer cells in response to proteasome inhibitor bortezomib. Tumor Biol. 2012;33:1385–1392. doi: 10.1007/s13277-012-0386-3. PubMed DOI

Lukin DJ, Carvajal L, Liu W, Resnick-Silverman L, Manfredi JJ. p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol. Cancer Res. 2015;13:16–28. doi: 10.1158/1541-7786.MCR-14-0177. PubMed DOI PMC

Rudolf E, Červinka M. Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol. Vitr. 2011;25:1302–1309. doi: 10.1016/j.tiv.2011.04.019. PubMed DOI

Dalmases, A., González, I. & Menendez, S. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-kB target genes in human breast cancer. Oncotarget5 (2013). PubMed PMC

Gonec T, et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–41. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Bunz F, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–501. doi: 10.1126/science.282.5393.1497. PubMed DOI

Kubinyi H. QSAR and 3D QSAR in drug design Part 1: methodology. Drug Discov. Today. 1997;2:457–467. doi: 10.1016/S1359-6446(97)01079-9. DOI

Polanski J, Gieleciak R, Magdziarz T, Bak A. GRID Formalism for the Comparative Molecular Surface Analysis: Application to the CoMFA Benchmark Steroids, Azo Dyes, and HEPT Derivatives. J. Chem. Inf. Comput. Sci. 2004;44:1423–1435. doi: 10.1021/ci049960l. PubMed DOI

Pizova H, et al. Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules. 2017;22:1969. doi: 10.3390/molecules22111969. PubMed DOI PMC

Stanton DT. QSAR and QSPR model interpretation using partial least squares (PLS) analysis. Curr. Comput. Aided. Drug Des. 2012;8:107–27. doi: 10.2174/157340912800492357. PubMed DOI

Gonzalez M, Teran C, Saiz-Urra L, Teijeira M. Variable Selection Methods in QSAR: An Overview. Curr. Top. Med. Chem. 2008;8:1606–1627. doi: 10.2174/156802608786786552. PubMed DOI

Centner V, et al. Elimination of Uninformative Variables for Multivariate Calibration. Anal. Chem. 1996;68:3851–3858. doi: 10.1021/ac960321m. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...