Insight into antistaphylococcal effect of chlorinated 1-hydroxynaphthalene-2-carboxanilides
Status PubMed-not-MEDLINE Jazyk angličtina Země Chorvatsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40314001
PubMed Central
PMC12043106
DOI
10.5599/admet.2684
Knihovny.cz E-zdroje
- Klíčová slova
- Lipophilicity, MTT assay, antistaphylococcal activity, chemoproteomic analysis, cytotoxicity,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: New compounds and innovative therapeutic approaches are trying to prevent antimicrobial resistance, which has become a global health challenge. EXPERIMENTAL APPROACH: This study includes a series of twelve mono-, di- and trichlorinated 1-hydroxynaphthalene-2-carboxanilides designed as multitarget agents. All compounds were evaluated for their antistaphylococcal activity. Furthermore, MTT assay and chemoproteomic analysis of selected compounds were performed. Cytotoxicity in human cells was also tested. KEY RESULTS: N-(3,5-Dichlorophenyl)-1-hydroxynaphthalene-2-carboxamide (10) demonstrated activity comparable to or higher than clinically used drugs, with minimum inhibitory concentrations (MICs) of 0.37 μM. The compound was equally effective against clinical isolates of methicillin-resistant S. aureus. On the other hand, compound 10 showed 96 % inhibition of S. aureus respiration only at a concentration of 16× MIC. Chemoproteomic analysis revealed that the effect of agent 10 on staphylococci resulted in the downregulation of four proteins. This compound expressed no in vitro cytotoxicity up to a concentration of 30 μM. CONCLUSION: From the set of tested mono-, di- and trisubstituted derivatives, it is evident that the position of chlorine atoms is decisive for significant antistaphylococcal activity. Inhibition of energy metabolism does not appear to be one of the main mechanisms of action of compound 10; on the contrary, the antibacterial effect may likely be contributed by downregulation of proteins (especially ATP-dependent protease ATPase subunit HslU) involved in processes essential for bacterial survival and growth, such as protein, nucleotide/nucleic acid synthesis and efficient protein repair/degradation.
Institute of Chemistry University of Silesia Szkolna 9 40 006 Katowice Poland
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
WHO Bacterial Priority Pathogens List, 2024. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 February 2025).
WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022. https://www.who.int/publications/i/item/9789240062702 (accessed on 10 February 2025).
Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016-2020. European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2022. https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020 (accessed on 10 February 2025).
Fongang H., Mbaveng A.T., Kuete V. Global burden of bacterial infections and drug resistance. in Advances in Botanical Research, Kuete V. (Ed.), Academic Press & Elsevier, Amsterdam, Netherlands, 2023, pp.1-20. https://doi.org/10.1016/bs.abr.2022.08.001 10.1016/bs.abr.2022.08.001 DOI
National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Long-Term Health and Economic Effects of Antimicrobial Resistance in the United States. in Combating Antimicrobial Resistance and Protecting the Miracle of Modern Medicine, Palmer G.H., Buckley G.J. (Eds.), National Academies Press, Washington D.C., USA, 2022. https://nap.nationalacademies.org/catalog/26350/combating-antimicrobial-resistance-and-protecting-the-miracle-of-modern-medicine (accessed on 10 February 2025). PubMed
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. Lancet 404 (2024) 1199-1226. https://doi.org/10.1016/s0140-6736(24)01867-1 10.1016/s0140-6736(24)01867-1 PubMed DOI PMC
GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400 (2022) 2221-2248. https://doi.org/10.1016/S0140-6736(22)02185-7 10.1016/S0140-6736(22)02185-7 PubMed DOI PMC
Jampilek J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Current Medicinal Chemistry 25 (2018) 4972-5006. https://doi.org/10.2174/0929867324666170918122633 10.2174/0929867324666170918122633 PubMed DOI
Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P.B., Glaser P., Aigle B., Bode H.B., Moreira R., Li Y., Luzhetskyy A., Medema M.H., Pernodet J.L., Stadler M., Tormo J.R., Genilloud O., Truman A.W., Weissman K.J., Takano E., Sabatini S., Stegmann E., Brötz-Oesterhelt H., Wohlleben W., Seemann M., Empting M., Hirsch A.K.H., Loretz B., Lehr C.M., Titz A., Herrmann J., Jaeger T., Alt S., Hesterkamp T., Winterhalter M., Schiefer A., Pfarr K., Hoerauf A., Graz H., Graz M., Lindvall M., Ramurthy S., Karlén A., van Dongen M., Petkovic H., Keller A., Peyrane F., Donadio S., Fraisse L., Piddock L.J.V., Gilbert I.H., Moser H.E., Müller R. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5 (2021) 726-749. https://doi.org/10.1038/s41570-021-00313-1 10.1038/s41570-021-00313-1 PubMed DOI PMC
Ayon N.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites 13 (2023) 625. https://doi.org/10.3390/metabo13050625 10.3390/metabo13050625 PubMed DOI PMC
Boyd N.K., Teng C., Frei C.R. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Frontiers in Cellular and Infection Microbiology 11 (2021) 684515. https://doi.org/10.3389/fcimb.2021.684515 10.3389/fcimb.2021.684515 PubMed DOI PMC
Mondal S.K., Chakraborty S., Manna S., Mandal S.M. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharmaceutics 1 (2024) 388-402. https://doi.org/10.1039/D4PM00032C 10.1039/D4PM00032C DOI
Gray D.A., Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infectious Diseases 6 (2020) 1346-1365. https://doi.org/10.1021/acsinfecdis.0c00001 10.1021/acsinfecdis.0c00001 PubMed DOI PMC
Suckling C.J., Hunter I.S., Scott F.J. Multitargeted anti-infective drugs: Resilience to resistance in the antimicrobial resistance era. Future Drug Discovery 4 (2022) FDD73. https://doi.org/10.4155/fdd-2022-0001 10.4155/fdd-2022-0001 PubMed DOI PMC
Feng J., Zheng Y., Ma W., Ihsan A., Hao H., Cheng G., Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacology & Therapeutics 252 (2023) 108550. https://doi.org/10.1016/j.pharmthera.2023.108550 10.1016/j.pharmthera.2023.108550 PubMed DOI
Bremner J.B. An update review of approaches to multiple action-based antibacterials. Antibiotics 12 (2023) 865. https://doi.org/10.3390/antibiotics12050865 10.3390/antibiotics12050865 PubMed DOI PMC
Stelitano G., Sammartino J.C., Chiarelli L.R. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 25 (2020) 1239. https://doi.org/10.3390/molecules25051239 10.3390/molecules25051239 PubMed DOI PMC
Lagadinou M., Onisor M.O., Rigas A., Musetescu D.V., Gkentzi D., Assimakopoulos S.F., Panos G., Marangos M. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics 9 (2020) 107. https://doi.org/10.3390/antibiotics9030107 10.3390/antibiotics9030107 PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 16 (2011) 2414-2430. https://doi.org/10.3390/molecules16032414 10.3390/molecules16032414 PubMed DOI PMC
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. Journal of Applied Biomedicine 14 (2016) 125-130. https://doi.org/10.1016/j.jab.2016.01.005 10.1016/j.jab.2016.01.005 DOI
Borbala-Horvath L., Kratky M., Pflegr V., Mahes E., Gyulai G., Kohut G., Babiczky A., Biri-Kovacs B., Baranyai Z., Vinsova J., Bosze S. Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. European Journal of Pharmaceutics and Biopharmaceutics 174 (2022) 111-130. https://doi.org/10.1016/j.ejpb.2022.03.009 10.1016/j.ejpb.2022.03.009 PubMed DOI
Paraskevopoulos G., Monteiro S., Vosatka R., Kratky M., Navratilova L., Trejtnar F., Stolarikova J., Vinsova J. Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry 25 (2017) 1524-1532. https://doi.org/10.1016/j.bmc.2017.01.016 10.1016/j.bmc.2017.01.016 PubMed DOI
Alhashimi M., Mayhoub A., Seleem M.N. Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 63 (2019) e01225-19. https://doi.org/10.1128/aac.01225-19 10.1128/aac.01225-19 PubMed DOI PMC
Almolhim H., Elhassanny A.E.M., Abutaleb N.S., Abdelsattar A.S., Seleem M.N., Carlier P.R. Substituted salicylic acid analogs offer improved potency against multidrug-resistant Neisseria gonorrhoeae and good selectivity against commensal vaginal bacteria. Scientific Reports 13 (2023) 14468. https://doi.org/10.1038/s41598-023-41442-5 10.1038/s41598-023-41442-5 PubMed DOI PMC
Yokoyama T., Mizuguchi M., Nabeshima Y., Nakagawa Y., Okada T., Toyooka N., Kusaka K. Rafoxanide, a salicylanilide anthelmintic, interacts with human plasma protein transthyretin. The FEBS Journal 290 (2023) 5158-5170. https://doi.org/10.1111/febs.16915 10.1111/febs.16915 PubMed DOI
Kauerova T., Perez-Perez M.J., Kollar P. Salicylanilides and their anti-cancer properties. International Journal of Molecular Sciences 24 (2023) 1728. https://doi.org/10.3390/ijms24021728 10.3390/ijms24021728 PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., Csollei J., Richardson D.R., Jampilek J. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 15 (2010) 8122-8142. https://doi.org/10.3390/molecules15118122 10.3390/molecules15118122 PubMed DOI PMC
Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorganic & Medicinal Chemistry Letters 21 (2011) 4564-4567. https://doi.org/10.1016/j.bmcl.2011.05.118 10.1016/j.bmcl.2011.05.118 PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., Jampilek J. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 21 (2013) 6531-6541. https://doi.org/10.1016/j.bmc.2013.08.030 10.1016/j.bmc.2013.08.030 PubMed DOI
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., Jampilek J. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 21 (2016) 1068. https://doi.org/10.3390/molecules21081068 10.3390/molecules21081068 PubMed DOI PMC
Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., Cizek A., Bak A., Jampilek J. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: comparative molecular surface analysis. Molecules 24 (2019) 2991. https://doi.org/10.3390/molecules24162991 10.3390/molecules24162991 PubMed DOI PMC
Spaczynska E., Mrozek-Wilczkiewicz A., Malarz K., Kos J., Gonec T., Oravec M., Gawecki R., Bak A., Dohanosova J., Kapustikova I., Liptaj T., Jampilek J., Musiol R. Design and synthesis of anti-cancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Scientific Reports 9 (2019) 6387. https://doi.org/10.1038/s41598-019-42595-y 10.1038/s41598-019-42595-y PubMed DOI PMC
Kauerova T., Gonec T., Jampilek J., Hafner S., Gaiser A.K., Syrovets T., Fedr R., Soucek K., Kollar P. Ring-substituted 1-hydroxynaphthalene-2-carboxanilides inhibit proliferation and trigger mitochondria-mediated apoptosis. International Journal of Molecular Sciences 21 (2020) 3416. https://doi.org/10.3390/ijms21103416 10.3390/ijms21103416 PubMed DOI PMC
Terada H., Goto S., Yamamoto K., Takeuchi I., Hamada Y., Miyake K. Structural requirements of salicylanilides for uncoupling activity in mitochondria: quantitative analysis of structure-uncoupling relationships. Biochimica et Biophysica Acta 936 (1988) 504-512. https://doi.org/10.1016/0005-2728(88)90027-8 10.1016/0005-2728(88)90027-8 PubMed DOI
Lee I.Y., Gruber T.D., Samuels A., Yun M., Nam B., Kang M., Crowley K., Winterroth B., Boshoff H.I., Barry C.E. Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorganic and Medicinal Chemistry 21 (2013) 114-126. https://doi.org/10.1016/j.bmc.2012.10.056 10.1016/j.bmc.2012.10.056 PubMed DOI PMC
Macielag M.J., Demers J.P., Fraga-Spano S.A., Hlasta D.J., Johnson S.G., Kanojia R.M., Russell R.K., Sui Z., Weidner-Wells M.A., Werblood H., Foleno B.D., Goldschmidt R.M., Loeloff M.J., Webb G.C., Barrett J.F. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Journal of Medicinal Chemistry 41 (1998) 2939-2945. https://doi.org/10.1021/jm9803572 10.1021/jm9803572 PubMed DOI
Dasgupta N., Kapur V., Singh K.K., Das T.K., Sachdeva S., Jyothisri K., Tyagi J.S. Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tubercle and Lung Disease 80 (2000) 141-159. https://doi.org/10.1054/tuld.2000.0240 10.1054/tuld.2000.0240 PubMed DOI
Moellering R.E., Cravatt B.F. How chemoproteomics can enable drug discovery and development. Chemical Biology 19 (2012) 11-22. https://doi.org/10.1016/j.chembiol.2012.01.001 10.1016/j.chembiol.2012.01.001 PubMed DOI PMC
Malarney K.P., Chang P.V. Chemoproteomic approaches for unraveling prokaryotic biology. Israel Journal of Chemistry 63 (2023) e202200076. https://doi.org/10.1002/ijch.202200076 10.1002/ijch.202200076 PubMed DOI PMC
Drewes G., Knapp S. Chemoproteomics and chemical probes for target discovery. Trends in Biotechnology 36 (2018) 1275-1286. https://doi.org/10.1016/j.tibtech.2018.06.008 10.1016/j.tibtech.2018.06.008 PubMed DOI
Jones L.H., Neubert H. Clinical chemoproteomics—Opportunities and obstacles. Science Translational Medicine 9 (2017) 7951. https://doi.org/10.1126/scitranslmed.aaf7951 10.1126/scitranslmed.aaf7951 PubMed DOI
Chen X., Wong Y.K., Wang J., Zhang J., Lee Y., Shen H., Lin Q., Hua Z.C. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 17 (2017) 1600212. https://doi.org/10.1002/pmic.201600212 10.1002/pmic.201600212 PubMed DOI
Wang S., Tian Y., Wang M., Wang M., Sun G., Sun X. Advanced activity-based protein profiling application strategies for drug development. Frontiers in Pharmacology 9 (2018) 353. https://doi.org/10.3389/fphar.2018.00353 10.3389/fphar.2018.00353 PubMed DOI PMC
Naumann K. Influence of chlorine substituents on biological activity of chemicals: A review. Pest Management Science 56 (2000) 3-21. https://doi.org/10.1002/(SICI)1526-4998(200001)56:1%3C3::AID-PS107%3E3.0.CO;2-P 10.1002/(SICI)1526-4998(200001)56:1<3::AID-PS107>3.0.CO;2-P DOI
Fang W.Y., Ravindar L., Rakesh K.P., Manukumar H.M., Shantharam C.S., Alharbi N.S., Qin H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. European Journal of Medicinal Chemistry 173 (2019) 117-153. https://doi.org/10.1016/j.ejmech.2019.03.063 10.1016/j.ejmech.2019.03.063 PubMed DOI PMC
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules 15 (2010) 8567-8581. https://doi.org/10.3390/molecules15128567 10.3390/molecules15128567 PubMed DOI PMC
Faleye O.S., Boya B.R., Lee J.H., Choi I., Lee J. Halogenated antimicrobial agents to combat drug-resistant pathogens. Pharmacological Reviews 76 (2023) 90-141. https://doi.org/10.1124/pharmrev.123.000863 10.1124/pharmrev.123.000863 PubMed DOI
Huber R., Marcourt L., Heritier M., Luscher A., Guebey L., Schnee S., Michellod E., Guerrier S., Wolfender J.L., Scapozza L., Kohler T., Gindro K., Queiroz E.F. Generation of potent antibacterial compounds through enzymatic and chemical modifications of the trans-δ-viniferin scaffold. Scientific Reports 13 (2023) 15986. https://doi.org/10.1038/s41598-023-43000-5 10.1038/s41598-023-43000-5 PubMed DOI PMC
Krawczyk-Lebek A., Zarowska B., Janeczko T., Kostrzewa-Suslow E. Antimicrobial activity of chalcones with a chlorine atom and their glycosides. International Journal of Molecular Sciences 25 (2024) 9718. https://doi.org/10.3390/ijms25179718 10.3390/ijms25179718 PubMed DOI PMC
Perz M., Szymanowska D., Janeczko T., Kostrzewa-Suslow E. Antimicrobial properties of flavonoid derivatives with bromine, chlorine, and nitro group obtained by chemical synthesis and biotransformation studies. International Journal of Molecular Sciences 25 (2024) 5540. https://doi.org/10.3390/ijms25105540 10.3390/ijms25105540 PubMed DOI PMC
Taylor T.A., Unakal C.G. Staphylococcus aureus Infection; StatPearls Publishing, Treasure Island, FL, USA, 2024. https://www.ncbi.nlm.nih.gov/books/NBK441868 (accessed on 10 February 2025). PubMed
Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-hydroxynaphthalene-2-carboxanilides affecting photosynthetic electron transport in photosystem II. Molecules 22 (2017) 1709. https://doi.org/10.3390/molecules22101709 10.3390/molecules22101709 PubMed DOI PMC
EZChrom Elite software ver. 3.3.2. Agilent, Santa Clara, CA, USA. https://ezchrom-elite.software.informer.com/3.3/
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Research International 2015 (2015) 349534. https://doi.org/10.1155/2015/349534 10.1155/2015/349534 PubMed DOI PMC
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., Balloux F., Witte W. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLOS Pathogens 6 (2010) e1000855. https://doi.org/10.1371/journal.ppat.1000855 10.1371/journal.ppat.1000855 PubMed DOI PMC
Bosgelmez-Tinaz G., Ulusoy S., Aridogan B., Coskun-Ari F. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. European Journal of Clinical Microbiology & Infectious Diseases 25 (2006) 410-412. https://doi.org/10.1007/s10096-006-0153-8 10.1007/s10096-006-0153-8 PubMed DOI
Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. Journal of Clinical Microbiology 36 (1998) 618-623. https://doi.org/10.1128/jcm.36.3.618-623.1998 10.1128/jcm.36.3.618-623.1998 PubMed DOI PMC
Weinstein M.P., Patel J.B. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A11, 11th edition, Committee for Clinical Laboratory Standards, Wayne, PA, 2018. https://clsi.org/media/1928/m07ed11_sample.pdf
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols, CRC Press, Boca Raton, FL, USA, 2007. https://doi.org/10.1201/9781420014495 10.1201/9781420014495 DOI
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochemica 120 (2018) 303-311. https://doi.org/10.1016/j.acthis.2018.03.007 10.1016/j.acthis.2018.03.007 PubMed DOI
GraphPad Prism 5.00 software. GraphPadSoftware, San Diego, CA, USA. http://www.graphpad.com
Progenesis QI 4.0. Waters, Milford, USA, https://www.waters.com/nextgen/us/en/products/informatics-and-software/mass-spectrometry-software/progenesis-qi-software.html
UniProt: The Universal Protein Knowledgebase in 2023. https://www.uniprot.org/ PubMed PMC
Wu K., Kwon S.H., Zhou X., Fuller C., Wang X., Vadgama J., Wu Y. Overcoming challenges in small-molecule drug bioavailability: A review of key factors and approaches. International Journal of Molecular Sciences 25 (2024) 13121. https://doi.org/10.3390/ijms252313121 10.3390/ijms252313121 PubMed DOI PMC
ACD/Percepta ver. 2012. Advanced Chemistry Development, Inc., Toronto ON, Canada, 2012. https://www.acdlabs.com/products/percepta-platform/
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0 10.1016/S0169-409X(00)00129-0 PubMed DOI
Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press, San Diego, CA, USA, 2008. ISBN 978-0-12-369520-8
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n 10.1021/jm020017n PubMed DOI
Chung T.D.Y., Terry D.B., Smith L.H. In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization - guidelines, benchmarks and rules of thumb. in The Assay Guidance Manual, Markossian S. (Ed), National Institutes of Health - National Center for Advancing Translational Sciences, Rockville, MD, USA, 2015. https://www.ncbi.nlm.nih.gov/books/NBK326710/ (accessed on 08 February 2025). PubMed
Hansch C. Bioisosterism. Intra-Science Chemistry Reports 8 (1974) 17-25.
Korona-Glowniak I., Nitek W., Tejchman W., Zeslawska E. Influence of chlorine and methyl substituents and their position on the antimicrobial activities and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. Acta Crystallographica Section C: Structural Chemistry 77 (2021) 649-658. https://doi.org/10.1107/s205322962100975x 10.1107/s205322962100975x PubMed DOI
Janowska S., Stefanska J., Khylyuk D., Wujec M. The importance of substituent position for antibacterial activity in the group of thiosemicarbazide derivatives. Molecules 29 (2024) 1333. https://doi.org/10.3390/molecules29061333 10.3390/molecules29061333 PubMed DOI PMC
Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. International Journal of Molecular Sciences 21 (2020), 6583. https://doi.org/10.3390/ijms21186583 10.3390/ijms21186583 PubMed DOI PMC
MetaboAnalyst 6.0. https://dev.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
Staphylococcus aureus subsp. aureus Mu50 (MRSA/VISA): SAV1363. DBGET Search, Kyoto University Bioinformatics Center. https://www.genome.jp/entry/sav:SAV1363
Couvreur B., Wattiez R., Bollen A., Falmagne P.l., Le Ray D., Dujardin J.C. Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Molecular Biology and Evolution 19 (2002) 2110-2117. https://doi.org/10.1093/oxfordjournals.molbev.a004036 10.1093/oxfordjournals.molbev.a004036 PubMed DOI
Zhang F., Cheng W. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 11 (2022) 1215. https://doi.org/10.3390/antibiotics11091215 10.3390/antibiotics11091215 PubMed DOI PMC
Avci F.G. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 40 (2024) 285. https://doi.org/10.1007/s11274-024-04090-z 10.1007/s11274-024-04090-z PubMed DOI PMC
Zavizion B., Zhao Z., Nittayajarn A., Rieder R.J. Rapid microbiological testing: monitoring the development of bacterial stress. PLoS One 5 (2010) e13374. https://doi.org/10.1371/journal.pone.0013374 10.1371/journal.pone.0013374 PubMed DOI PMC