Activation of the tick Toll pathway to control infection of Ixodes ricinus by the apicomplexan parasite Babesia microti
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39680508
PubMed Central
PMC11649134
DOI
10.1371/journal.ppat.1012743
PII: PPATHOGENS-D-24-01540
Knihovny.cz E-zdroje
- MeSH
- Babesia microti * imunologie MeSH
- babezióza imunologie parazitologie MeSH
- klíště * parazitologie imunologie MeSH
- přirozená imunita MeSH
- signální transdukce * MeSH
- toll-like receptory * metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- toll-like receptory * MeSH
The vector competence of blood-feeding arthropods is influenced by the interaction between pathogens and the immune system of the vector. The Toll and IMD (immune deficiency) signaling pathways play a key role in the regulation of innate immunity in both the Drosophila model and blood-feeding insects. However, in ticks (chelicerates), immune determination for pathogen acquisition and transmission has not yet been fully explored. Here, we have mapped homologs of insect Toll and IMD pathways in the European tick Ixodes ricinus, an important vector of human and animal diseases. We show that most genes of the Toll pathway are well conserved, whereas the IMD pathway has been greatly reduced. We therefore investigated the functions of the individual components of the tick Toll pathway and found that, unlike in Drosophila, it was specifically activated by Gram-negative bacteria. The activation of pathway induced the expression of defensin (defIR), the first identified downstream effector gene of the tick Toll pathway. Borrelia, an atypical bacterium and causative agent of Lyme borreliosis, bypassed Toll-mediated recognition in I. ricinus and also resisted systemic effector molecules when the Toll pathway was activated by silencing its repressor cactus via RNA interference. Babesia, an apicomplexan parasite, also avoided Toll-mediated recognition. Strikingly, unlike Borrelia, the number of Babesia parasites reaching the salivary glands during tick infection was significantly reduced by knocking down cactus. The simultaneous silencing of cactus and dorsal resulted in greater infections and underscored the importance of tick immunity in regulating parasite infections in these important disease vectors.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Nantes Atlantic National College of Veterinary Medicine Nantes France
Zobrazit více v PubMed
Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al.. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;3: 26. doi: 10.3389/fcimb.2013.00026 PubMed DOI PMC
Kotsyfakis M, Kopáček P, Franta Z, Pedra JHF, Ribeiro JMC. Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. PLoS Negl Trop Dis. 2015;9: e0003754. doi: 10.1371/journal.pntd.0003754 PubMed DOI PMC
Shaw DK, Tate AT, Schneider DS, Levashina EA, Kagan JC, Pal U, et al.. Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology. 2018. doi: 10.1016/j.it.2018.09.003 PubMed DOI PMC
Honig Mondekova H, Hajdusek O, Urbanova V, Sima R, Rego ROM, Kopacek P, et al.. Characterization of Ixodes ricinus Fibrinogen-Related Proteins (Ixoderins) Discloses Their Function in the Tick Innate Immunity. Front Cell Infect Microbiol. 2017. doi: 10.3389/fcimb.2017.00509 PubMed DOI PMC
Buresova V, Hajdusek O, Franta Z, Loosova G, Grunclova L, Levashina EA, et al.. Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J Innate Immun. 2011;3: 623–630. doi: 10.1159/000328851 PubMed DOI
Ferrandon D, Imler JL, Hetru C, Hoffmann JA. The Drosophila systemic immune response: Sensing and signalling during bacterial and fungal infections. Nature Reviews Immunology. 2007. doi: 10.1038/nri2194 PubMed DOI
De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002;21: 2568–2579. doi: 10.1093/emboj/21.11.2568 PubMed DOI PMC
Royet J, Reichhart J-M, Hoffmann JA. Sensing and signaling during infection in Drosophila. Curr Opin Immunol. 2005;17: 11–17. doi: 10.1016/j.coi.2004.12.002 PubMed DOI
Severo MS, Levashina EA. Mosquito defenses against Plasmodium parasites. Curr Opin insect Sci. 2014;3: 30–36. doi: 10.1016/j.cois.2014.07.007 PubMed DOI
Chávez ASO, Shaw DK, Munderloh UG, Pedra JHF. Tick humoral responses: Marching to the beat of a different drummer. Frontiers in Microbiology. 2017. doi: 10.3389/fmicb.2017.00223 PubMed DOI PMC
Palmer WJ, Jiggins FM. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol Biol Evol. 2015;32: 2111–2129. doi: 10.1093/molbev/msv093 PubMed DOI PMC
Rosa RD, Capelli-Peixoto J, Mesquita RD, Kalil SP, Pohl PC, Braz GR, et al.. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Dev Comp Immunol. 2016. doi: 10.1016/j.dci.2015.12.018 PubMed DOI
Shaw DK, Wang X, Brown LJ, Chávez ASO, Reif KE, Smith AA, et al.. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat Commun. 2017. doi: 10.1038/ncomms14401 PubMed DOI PMC
Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology. 2020. doi: 10.1038/s41579-020-0400-5 PubMed DOI PMC
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, et al.. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol. 2021;12: 628054. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC
McClure Carroll EE, Wang X, Shaw DK, O’Neal AJ, Oliva Chávez AS, Brown LJ, et al.. p47 licenses activation of the immune deficiency pathway in the tick Ixodes scapularis. Proc Natl Acad Sci U S A. 2019;116: 205–210. doi: 10.1073/pnas.1808905116 PubMed DOI PMC
Trentelman JJA, Sima R, Krezdorn N, Tomás-Cortázar J, Barriales D, Takumi K, et al.. A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B. afzelii transmission. Sci Rep. 2020;10: 20061. doi: 10.1038/s41598-020-76268-y PubMed DOI PMC
Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol. 2009;1: a000232. doi: 10.1101/cshperspect.a000232 PubMed DOI PMC
Minakhina S, Steward R. Nuclear factor-kappa B pathways in Drosophila. Oncogene. 2006;25: 6749–6757. doi: 10.1038/sj.onc.1209940 PubMed DOI
Benton MA, Pechmann M, Frey N, Stappert D, Conrads KH, Chen Y-T, et al.. Toll Genes Have an Ancestral Role in Axis Elongation. Curr Biol. 2016;26: 1609–1615. doi: 10.1016/j.cub.2016.04.055 PubMed DOI
Buresova V, Hajdusek O, Franta Z, Loosova G, Grunclova L, Levashina EA, et al.. Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J Innate Immun. 2011;3: 623–630. doi: 10.1159/000328851 PubMed DOI
Silva FD, Rezende CA, Rossi DCP, Esteves E, Dyszy FH, Schreier S, et al.. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J Biol Chem. 2009;284: 34735–34746. doi: 10.1074/jbc.M109.016410 PubMed DOI PMC
Mahmood S, Sima R, Urbanova V, Trentelman JJA, Krezdorn N, Winter P, et al.. Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach. Front Immunol. 2020;11: 612412. doi: 10.3389/fimmu.2020.612412 PubMed DOI PMC
Pospisilova T, Urbanova V, Hes O, Kopacek P, Hajdusek O, Sima R. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect Immun. 2019. doi: 10.1128/IAI.00896-18 PubMed DOI PMC
Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity. 2006;25: 677–685. doi: 10.1016/j.immuni.2006.08.019 PubMed DOI
Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. Conserved Role of a Complement-like Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the Mosquito, Anopheles gambiae. Cell. 2001;104: 709–718. doi: 10.1016/S0092-8674(01)00267-7 PubMed DOI
Karakashian SJ, Rudzinska MA, Spielman A, Lewengrub S, Piesman J, Shoukrey N. Ultrastructural studies on sporogony of Babesia microti in salivary gland cells of the tick Ixodes dammini. Cell Tissue Res. 1983;231: 275–287. doi: 10.1007/BF00222180 PubMed DOI
Fiorotti J, Urbanová V, Gôlo PS, Bittencourt VREP, Kopáček P. The role of complement in the tick cellular immune defense against the entomopathogenic fungus Metarhizium robertsii. Dev Comp Immunol. 2022;126: 104234. doi: 10.1016/j.dci.2021.104234 PubMed DOI
Igaki T, Miura M. The Drosophila TNF ortholog Eiger: emerging physiological roles and evolution of the TNF system. Semin Immunol. 2014;26: 267–274. doi: 10.1016/j.smim.2014.05.003 PubMed DOI
Wang S, Li H, Li Q, Yin B, Li S, He J, et al.. Signaling events induced by lipopolysaccharide-activated Toll in response to bacterial infection in shrimp. Front Immunol. 2023;14: 1119879. doi: 10.3389/fimmu.2023.1119879 PubMed DOI PMC
Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al.. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479: 487–492. doi: 10.1038/nature10640 PubMed DOI PMC
Shin SW, Kokoza V, Ahmed A, Raikhel AS. Characterization of three alternatively spliced isoforms of the Rel/NF-kappa B transcription factor Relish from the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2002;99: 9978–9983. doi: 10.1073/pnas.162345999 PubMed DOI PMC
Meister S, Kanzok SM, Zheng X-L, Luna C, Li T-R, Hoa NT, et al.. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2005;102: 11420–11425. doi: 10.1073/pnas.0504950102 PubMed DOI PMC
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, et al.. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. MBio. 2022;13: e0070322. doi: 10.1128/mbio.00703-22 PubMed DOI PMC
Brinton LP, Oliver JHJ. Fine structure of oogonial and oocyte development in Dermacentor andersoni Stiles (Acari: Ixodidae). J Parasitol. 1971;57: 720–747. PubMed
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, et al.. The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis. 2013;51: 803–818. doi: 10.1002/dvg.22717 PubMed DOI
St Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992;68: 201–219. doi: 10.1016/0092-8674(92)90466-p PubMed DOI
Nishide Y, Kageyama D, Yokoi K, Jouraku A, Tanaka H, Futahashi R, et al.. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proceedings Biol Sci. 2019;286: 20182207. doi: 10.1098/rspb.2018.2207 PubMed DOI PMC
Yokoi K, Koyama H, Minakuchi C, Tanaka T, Miura K. Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum. Results Immunol. 2012;2: 72–82. doi: 10.1016/j.rinim.2012.03.002 PubMed DOI PMC
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol. 2019;10: 1785. doi: 10.3389/fimmu.2019.01785 PubMed DOI PMC
Takayama K, Rothenberg RJ, Barbour AG. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1987;55: 2311–2313. doi: 10.1128/iai.55.9.2311–2313.1987 PubMed DOI PMC
Jutras BL, Lochhead RB, Kloos ZA, Biboy J, Strle K, Booth CJ, et al.. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019;116: 13498–13507. doi: 10.1073/pnas.1904170116 PubMed DOI PMC
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol. 2022;76: 113–134. doi: 10.1146/annurev-micro-041320-010046 PubMed DOI
Blandin S, Shiao S-H, Moita LF, Janse CJ, Waters AP, Kafatos FC, et al.. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell. 2004;116: 661–670. doi: 10.1016/s0092-8674(04)00173-4 PubMed DOI
Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, et al.. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci U S A. 2009;106: 1033–1038. doi: 10.1073/pnas.0807961106 PubMed DOI PMC
Urbanová V, Hartmann D, Grunclová L, Šíma R, Flemming T, Hajdušek O, et al.. IrFC—An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev Comp Immunol. 2014;46: 439–447. doi: 10.1016/j.dci.2014.05.016 PubMed DOI
Dusbábek F. Nymphal sexual dimorphism in the sheep tick Ixodes ricinus (Acari: Ixodidae). Folia Parasitol (Praha). 1996;43: 75–79. PubMed
Hajdusek O, Sima R, Perner J, Loosova G, Harcubova A, Kopacek P. Tick iron and heme metabolism—New target for an anti-tick intervention. Ticks Tick Borne Dis. 2016;7: 565–572. doi: 10.1016/j.ttbdis.2016.01.006 PubMed DOI