Size Matters: Rethinking Hertz Model Interpretation for Cell Mechanics Using AFM

. 2024 Jun 29 ; 25 (13) : . [epub] 20240629

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39000293

Grantová podpora
SGS22/149/OHK2/3T/12 Czech Technical University in Prague

Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.

Zobrazit více v PubMed

Dufrêne Y.F., Viljoen A., Mignolet J., Mathelié-Guinlet M. AFM in Cellular and Molecular Microbiology. Cell. Microbiol. 2021;23:e13324. doi: 10.1111/cmi.13324. PubMed DOI

Binnig G., Quate C.F., Gerber C. Atomic Force Microscope. Phys. Rev. Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI

Alsteens D., Beaussart A., El-Kirat-Chatel S., Sullan R.M.A., Dufrêne Y.F. Atomic Force Microscopy: A New Look at Pathogens. PLoS Pathog. 2013;9:e1003516. doi: 10.1371/journal.ppat.1003516. PubMed DOI PMC

Moeendarbary E., Harris A.R. Cell Mechanics: Principles, Practices, and Prospects. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014;6:371–388. doi: 10.1002/wsbm.1275. PubMed DOI PMC

Wu P.H., Aroush D.R.B., Asnacios A., Chen W.C., Dokukin M.E., Doss B.L., Durand-Smet P., Ekpenyong A., Guck J., Guz N.V., et al. A Comparison of Methods to Assess Cell Mechanical Properties. Nat. Methods. 2018;15:491–498. doi: 10.1038/s41592-018-0015-1. PubMed DOI PMC

Li M., Dang D., Liu L., Xi N., Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans. Nanobiosci. 2017;16:523–540. doi: 10.1109/TNB.2017.2714462. PubMed DOI

Li M., Xi N., Wang Y.C., Liu L.Q. Atomic Force Microscopy for Revealing Micro/Nanoscale Mechanics in Tumor Metastasis: From Single Cells to Microenvironmental Cues. Acta Pharmacol. Sin. 2021;42:323–339. doi: 10.1038/s41401-020-0494-3. PubMed DOI PMC

Peña B., Adbel-Hafiz M., Cavasin M., Mestroni L., Sbaizero O. Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int. J. Mol. Sci. 2022;23:3700. doi: 10.3390/ijms23073700. PubMed DOI PMC

Ohnesorge F.M., Hörber J.K., Häberle W., Czerny C.P., Smith D.P., Binnig G. AFM Review Study on Pox Viruses and Living Cells. Biophys. J. 1997;73:2183–2194. doi: 10.1016/S0006-3495(97)78250-X. PubMed DOI PMC

Efremov Y.M., Suter D.M., Timashev P.S., Raman A. 3D Nanomechanical Mapping of Subcellular and Sub-Nuclear Structures of Living Cells by Multi-Harmonic AFM with Long-Tip Microcantilevers. Sci. Rep. 2022;12:529. doi: 10.1038/s41598-021-04443-w. PubMed DOI PMC

Lim C.T., Zhou E.H., Quek S.T. Mechanical Models for Living Cells—A Review. J. Biomech. 2006;39:195–216. doi: 10.1016/j.jbiomech.2004.12.008. PubMed DOI

Guz N., Dokukin M., Kalaparthi V., Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys. J. 2014;107:564–575. doi: 10.1016/j.bpj.2014.06.033. PubMed DOI PMC

Liu B., Zhang L., Gao H. Poisson Ratio Can Play a Crucial Role in Mechanical Properties of Biocomposites. Mech. Mater. 2006;38:1128–1142. doi: 10.1016/j.mechmat.2006.02.002. DOI

Dokukin M.E., Sokolov I. On the Measurements of Rigidity Modulus of Soft Materials in Nanoindentation Experiments at Small Depth. Macromolecules. 2012;45:4277–4288. doi: 10.1021/ma202600b. DOI

Kontomaris S.V., Malamou A., Stylianou A. The Hertzian Theory in AFM Nanoindentation Experiments Regarding Biological Samples: Overcoming Limitations in Data Processing. Micron. 2022;155:103228. doi: 10.1016/j.micron.2022.103228. PubMed DOI

Sen S., Subramanian S., Discher D.E. Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments. Biophys. J. 2005;89:3203–3213. doi: 10.1529/biophysj.105.063826. PubMed DOI PMC

Pharr G.M., Oliver W.C., Brotzen F.R. On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic Modulus during Indentation. J. Mater. Res. 1992;7:613–617. doi: 10.1557/JMR.1992.0613. DOI

Kontomaris S.V., Malamou A. Hertz Model or Oliver & Pharr Analysis? Tutorial Regarding AFM Nanoindentation Experiments on Biological Samples. Mater. Res. Express. 2020;7:033001. doi: 10.1088/2053-1591/ab79ce. DOI

Timoshenko S., Goodier J.N. Theory of Elasticity. McGraw-Hill; New York, NY, USA: 1951.

Lekka M., Laidler P. Applicability of AFM in Cancer Detection. Nat. Nanotechnol. 2009;4:72. doi: 10.1038/nnano.2009.004. PubMed DOI

Kontomaris S.V., Stylianou A., Malamou A., Stylianopoulos T. A Discussion Regarding the Approximation of Cylindrical and Spherical Shaped Samples as Half Spaces in AFM Nanoindentation Experiments. Mater. Res. Express. 2018;5:085402. doi: 10.1088/2053-1591/aad2c9. DOI

Tsugawa S., Yamasaki Y., Horiguchi S., Zhang T., Muto T., Nakaso Y., Ito K., Takebayashi R., Okano K., Akita E., et al. Elastic Shell Theory for Plant Cell Wall Stiffness Reveals Contributions of Cell Wall Elasticity and Turgor Pressure in AFM Measurement. Sci. Rep. 2022;12:13044. doi: 10.1038/s41598-022-16880-2. PubMed DOI PMC

Overbeck A., Günther S., Kampen I., Kwade A. Compression Testing and Modeling of Spherical Cells – Comparison of Yeast and Algae. Chem. Eng. Technol. 2017;40:1158–1164. doi: 10.1002/ceat.201600145. DOI

Thomas G., Burnham N.A., Camesano T.A., Wen Q. Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy. J. Vis. Exp. JOVE. 2013;76:50497. doi: 10.3791/50497. PubMed DOI PMC

Delorme N., Fery A. Direct Method to Study Membrane Rigidity of Small Vesicles Based on Atomic Force Microscope Force Spectroscopy. Phys. Rev. E. 2006;74:030901. doi: 10.1103/PhysRevE.74.030901. PubMed DOI

Delorme N., Dubois M., Garnier S., Laschewsky A., Weinkamer R., Zemb T., Fery A. Surface Immobilization and Mechanical Properties of Catanionic Hollow Faceted Polyhedrons. J. Phys. Chem. B. 2006;110:1752–1758. doi: 10.1021/jp054473+. PubMed DOI

Reissner E. Stress Strain Relations in the Theory of Thin Elastic Shells. J. Math. Phys. 1952;31:109–119. doi: 10.1002/sapm1952311109. DOI

Otto O., Rosendahl P., Mietke A., Golfier S., Herold C., Klaue D., Girardo S., Pagliara S., Ekpenyong A., Jacobi A., et al. Real-Time Deformability Cytometry: On-the-fly Cell Mechanical Phenotyping. Nat. Methods. 2015;12:199–202. doi: 10.1038/nmeth.3281. PubMed DOI

Ren K., Gao J., Han D. AFM Force Relaxation Curve Reveals That the Decrease of Membrane Tension Is the Essential Reason for the Softening of Cancer Cells. Front. Cell Dev. Biol. 2021;9:663021. doi: 10.3389/fcell.2021.663021. PubMed DOI PMC

Xie K., Yang Y., Jiang H. Controlling Cellular Volume via Mechanical and Physical Properties of Substrate. Biophys. J. 2018;114:675–687. doi: 10.1016/j.bpj.2017.11.3785. PubMed DOI PMC

Nehls S., Nöding H., Karsch S., Ries F., Janshoff A. Stiffness of MDCK II Cells Depends on Confluency and Cell Size. Biophys. J. 2019;116:2204–2211. doi: 10.1016/j.bpj.2019.04.028. PubMed DOI PMC

Efremov Y.M., Velay-Lizancos M., Weaver C.J., Athamneh A.I., Zavattieri P.D., Suter D.M., Raman A. Anisotropy vs Isotropy in Living Cell Indentation with AFM. Sci. Rep. 2019;9:5757. doi: 10.1038/s41598-019-42077-1. PubMed DOI PMC

Reed J., Troke J.J., Schmit J., Han S., Teitell M.A., Gimzewski J.K. Live Cell Interferometry Reveals Cellular Dynamism During Force Propagation. ACS Nano. 2008;2:841–846. doi: 10.1021/nn700303f. PubMed DOI PMC

Rajagopal V., Holmes W.R., Lee P.V.S. Computational Modeling of Single-Cell Mechanics and Cytoskeletal Mechanobiology. Wires Syst. Biol. Med. 2018;10:e1407. doi: 10.1002/wsbm.1407. PubMed DOI PMC

Lopes dos Santos R., Campillo C. Studying Actin-Induced Cell Shape Changes Using Giant Unilamellar Vesicles and Reconstituted Actin Networks. Biochem. Soc. Trans. 2022;50:1527–1539. doi: 10.1042/BST20220900. PubMed DOI PMC

Cowman M.K., Schmidt T.A., Raghavan P., Stecco A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Research. 2015;4:622. doi: 10.12688/f1000research.6885.1. PubMed DOI PMC

Xie J., Najafi J., Le Borgne R., Verbavatz J.M., Durieu C., Sallé J., Minc N. Contribution of Cytoplasm Viscoelastic Properties to Mitotic Spindle Positioning. Proc. Natl. Acad. Sci. USA. 2022;119:e2115593119. doi: 10.1073/pnas.2115593119. PubMed DOI PMC

Rebenda D., Vrbka M., Čípek P., Toropitsyn E., Nečas D., Pravda M., Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. Materials. 2020;13:2659. doi: 10.3390/ma13112659. PubMed DOI PMC

Wang K., Sun X.H., Zhang Y., Zhang T., Zheng Y., Wei Y.C., Zhao P., Chen D.Y., Wu H.A., Wang W.H., et al. Characterization of Cytoplasmic Viscosity of Hundreds of Single Tumour Cells Based on Micropipette Aspiration. R. Soc. Open Sci. 2019;6:181707. doi: 10.1098/rsos.181707. PubMed DOI PMC

Hilšer P., Suchánková A., Mendová K., Filipič K.E., Daniel M., Vrbka M. A New Insight into More Effective Viscosupplementation Based on the Synergy of Hyaluronic Acid and Phospholipids for Cartilage Friction Reduction. Biotribology. 2021;25:100166. doi: 10.1016/j.biotri.2021.100166. DOI

Ungai-Salánki R., Csippa B., Gerecsei T., Péter B., Horvath R., Szabó B. Nanonewton Scale Adhesion Force Measurements on Biotinylated Microbeads with a Robotic Micropipette. J. Colloid Interface Sci. 2021;602:291–299. doi: 10.1016/j.jcis.2021.05.180. PubMed DOI

Wang M., Liu Z., Zhan W. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering. Langmuir. 2018;34:7509–7518. doi: 10.1021/acs.langmuir.8b00798. PubMed DOI

Ruozi B., Tosi G., Leo E., Vandelli M.A. Application of Atomic Force Microscopy to Characterize Liposomes as Drug and Gene Carriers. Talanta. 2007;73:12–22. doi: 10.1016/j.talanta.2007.03.031. PubMed DOI

Vorselen D., Piontek M.C., Roos W.H., Wuite G.J.L. Mechanical Characterization of Liposomes and Extracellular Vesicles, a Protocol. Front. Mol. Biosci. 2020;7:139. doi: 10.3389/fmolb.2020.00139. PubMed DOI PMC

Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Marcotti S., Reilly G.C., Lacroix D. Effect of Cell Sample Size in Atomic Force Microscopy Nanoindentation. J. Mech. Behav. Biomed. Mater. 2019;94:259–266. doi: 10.1016/j.jmbbm.2019.03.018. PubMed DOI

Cross S.E., Jin Y.S., Rao J., Gimzewski J.K. Applicability of AFM in Cancer Detection. Nat. Nanotechnol. 2009;4:72–73. doi: 10.1038/nnano.2009.036. PubMed DOI

Fischer-Cripps A.C. Introduction to Contact Mechanics. 2nd ed. Springer; New York, NY, USA: 2011. (Mechanical Engineering Series).

Ciulli E., Betti A., Forte P. The Applicability of the Hertzian Formulas to Point Contacts of Spheres and Spherical Caps. Lubricants. 2022;10:233. doi: 10.3390/lubricants10100233. DOI

Johnson K.L. One Hundred Years of Hertz Contact. Proc. Inst. Mech. Eng. 1982;196:363–378. doi: 10.1243/PIME_PROC_1982_196_039_02. DOI

Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 2004.

Popov V.L. Contact Mechanics and Friction. Springer; Berlin/Heidelberg, Germany: 2017. DOI

Hertz H. Ueber die Berührung fester elastischer Körper. J. für Die Reine Und Angew. Math. 1882;92:156–171.

Podio-Guidugli P., Favata A. The Boussinesq Problem. In: Podio-Guidugli P., Favata A., editors. Elasticity for Geotechnicians: A Modern Exposition of Kelvin, Boussinesq, Flamant, Cerruti, Melan, and Mindlin Problems. Springer International Publishing; Cham, Switzerland: 2014. pp. 79–114. DOI

Selvadurai A.P.S. On Boussinesq’s Problem for a Cracked Halfspace. J. Eng. Math. 2017;107:269–282. doi: 10.1007/s10665-017-9934-6. DOI

Selvadurai A.P.S. On Boussinesq’s Problem. Int. J. Eng. Sci. 2001;39:317–322. doi: 10.1016/S0020-7225(00)00043-4. DOI

Landau L.D., Lifšic E.M. Theory of Elastic. 3rd ed. Elsevier Butterworth Heinemann; Amsterdam, The Netherlands: 2009. Course of Theoretical Physics.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...