Size Matters: Rethinking Hertz Model Interpretation for Cell Mechanics Using AFM
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS22/149/OHK2/3T/12
Czech Technical University in Prague
PubMed
39000293
PubMed Central
PMC11241038
DOI
10.3390/ijms25137186
PII: ijms25137186
Knihovny.cz E-zdroje
- Klíčová slova
- Hertz contact model, atomic force microscopy (AFM), cell mechanics, cell stiffness,
- MeSH
- biologické modely MeSH
- biomechanika MeSH
- kyselina hyaluronová chemie MeSH
- lidé MeSH
- liposomy * chemie MeSH
- mikroskopie atomárních sil * metody MeSH
- modul pružnosti * MeSH
- velikost buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina hyaluronová MeSH
- liposomy * MeSH
Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.
Zobrazit více v PubMed
Dufrêne Y.F., Viljoen A., Mignolet J., Mathelié-Guinlet M. AFM in Cellular and Molecular Microbiology. Cell. Microbiol. 2021;23:e13324. doi: 10.1111/cmi.13324. PubMed DOI
Binnig G., Quate C.F., Gerber C. Atomic Force Microscope. Phys. Rev. Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI
Alsteens D., Beaussart A., El-Kirat-Chatel S., Sullan R.M.A., Dufrêne Y.F. Atomic Force Microscopy: A New Look at Pathogens. PLoS Pathog. 2013;9:e1003516. doi: 10.1371/journal.ppat.1003516. PubMed DOI PMC
Moeendarbary E., Harris A.R. Cell Mechanics: Principles, Practices, and Prospects. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014;6:371–388. doi: 10.1002/wsbm.1275. PubMed DOI PMC
Wu P.H., Aroush D.R.B., Asnacios A., Chen W.C., Dokukin M.E., Doss B.L., Durand-Smet P., Ekpenyong A., Guck J., Guz N.V., et al. A Comparison of Methods to Assess Cell Mechanical Properties. Nat. Methods. 2018;15:491–498. doi: 10.1038/s41592-018-0015-1. PubMed DOI PMC
Li M., Dang D., Liu L., Xi N., Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans. Nanobiosci. 2017;16:523–540. doi: 10.1109/TNB.2017.2714462. PubMed DOI
Li M., Xi N., Wang Y.C., Liu L.Q. Atomic Force Microscopy for Revealing Micro/Nanoscale Mechanics in Tumor Metastasis: From Single Cells to Microenvironmental Cues. Acta Pharmacol. Sin. 2021;42:323–339. doi: 10.1038/s41401-020-0494-3. PubMed DOI PMC
Peña B., Adbel-Hafiz M., Cavasin M., Mestroni L., Sbaizero O. Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int. J. Mol. Sci. 2022;23:3700. doi: 10.3390/ijms23073700. PubMed DOI PMC
Ohnesorge F.M., Hörber J.K., Häberle W., Czerny C.P., Smith D.P., Binnig G. AFM Review Study on Pox Viruses and Living Cells. Biophys. J. 1997;73:2183–2194. doi: 10.1016/S0006-3495(97)78250-X. PubMed DOI PMC
Efremov Y.M., Suter D.M., Timashev P.S., Raman A. 3D Nanomechanical Mapping of Subcellular and Sub-Nuclear Structures of Living Cells by Multi-Harmonic AFM with Long-Tip Microcantilevers. Sci. Rep. 2022;12:529. doi: 10.1038/s41598-021-04443-w. PubMed DOI PMC
Lim C.T., Zhou E.H., Quek S.T. Mechanical Models for Living Cells—A Review. J. Biomech. 2006;39:195–216. doi: 10.1016/j.jbiomech.2004.12.008. PubMed DOI
Guz N., Dokukin M., Kalaparthi V., Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys. J. 2014;107:564–575. doi: 10.1016/j.bpj.2014.06.033. PubMed DOI PMC
Liu B., Zhang L., Gao H. Poisson Ratio Can Play a Crucial Role in Mechanical Properties of Biocomposites. Mech. Mater. 2006;38:1128–1142. doi: 10.1016/j.mechmat.2006.02.002. DOI
Dokukin M.E., Sokolov I. On the Measurements of Rigidity Modulus of Soft Materials in Nanoindentation Experiments at Small Depth. Macromolecules. 2012;45:4277–4288. doi: 10.1021/ma202600b. DOI
Kontomaris S.V., Malamou A., Stylianou A. The Hertzian Theory in AFM Nanoindentation Experiments Regarding Biological Samples: Overcoming Limitations in Data Processing. Micron. 2022;155:103228. doi: 10.1016/j.micron.2022.103228. PubMed DOI
Sen S., Subramanian S., Discher D.E. Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments. Biophys. J. 2005;89:3203–3213. doi: 10.1529/biophysj.105.063826. PubMed DOI PMC
Pharr G.M., Oliver W.C., Brotzen F.R. On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic Modulus during Indentation. J. Mater. Res. 1992;7:613–617. doi: 10.1557/JMR.1992.0613. DOI
Kontomaris S.V., Malamou A. Hertz Model or Oliver & Pharr Analysis? Tutorial Regarding AFM Nanoindentation Experiments on Biological Samples. Mater. Res. Express. 2020;7:033001. doi: 10.1088/2053-1591/ab79ce. DOI
Timoshenko S., Goodier J.N. Theory of Elasticity. McGraw-Hill; New York, NY, USA: 1951.
Lekka M., Laidler P. Applicability of AFM in Cancer Detection. Nat. Nanotechnol. 2009;4:72. doi: 10.1038/nnano.2009.004. PubMed DOI
Kontomaris S.V., Stylianou A., Malamou A., Stylianopoulos T. A Discussion Regarding the Approximation of Cylindrical and Spherical Shaped Samples as Half Spaces in AFM Nanoindentation Experiments. Mater. Res. Express. 2018;5:085402. doi: 10.1088/2053-1591/aad2c9. DOI
Tsugawa S., Yamasaki Y., Horiguchi S., Zhang T., Muto T., Nakaso Y., Ito K., Takebayashi R., Okano K., Akita E., et al. Elastic Shell Theory for Plant Cell Wall Stiffness Reveals Contributions of Cell Wall Elasticity and Turgor Pressure in AFM Measurement. Sci. Rep. 2022;12:13044. doi: 10.1038/s41598-022-16880-2. PubMed DOI PMC
Overbeck A., Günther S., Kampen I., Kwade A. Compression Testing and Modeling of Spherical Cells – Comparison of Yeast and Algae. Chem. Eng. Technol. 2017;40:1158–1164. doi: 10.1002/ceat.201600145. DOI
Thomas G., Burnham N.A., Camesano T.A., Wen Q. Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy. J. Vis. Exp. JOVE. 2013;76:50497. doi: 10.3791/50497. PubMed DOI PMC
Delorme N., Fery A. Direct Method to Study Membrane Rigidity of Small Vesicles Based on Atomic Force Microscope Force Spectroscopy. Phys. Rev. E. 2006;74:030901. doi: 10.1103/PhysRevE.74.030901. PubMed DOI
Delorme N., Dubois M., Garnier S., Laschewsky A., Weinkamer R., Zemb T., Fery A. Surface Immobilization and Mechanical Properties of Catanionic Hollow Faceted Polyhedrons. J. Phys. Chem. B. 2006;110:1752–1758. doi: 10.1021/jp054473+. PubMed DOI
Reissner E. Stress Strain Relations in the Theory of Thin Elastic Shells. J. Math. Phys. 1952;31:109–119. doi: 10.1002/sapm1952311109. DOI
Otto O., Rosendahl P., Mietke A., Golfier S., Herold C., Klaue D., Girardo S., Pagliara S., Ekpenyong A., Jacobi A., et al. Real-Time Deformability Cytometry: On-the-fly Cell Mechanical Phenotyping. Nat. Methods. 2015;12:199–202. doi: 10.1038/nmeth.3281. PubMed DOI
Ren K., Gao J., Han D. AFM Force Relaxation Curve Reveals That the Decrease of Membrane Tension Is the Essential Reason for the Softening of Cancer Cells. Front. Cell Dev. Biol. 2021;9:663021. doi: 10.3389/fcell.2021.663021. PubMed DOI PMC
Xie K., Yang Y., Jiang H. Controlling Cellular Volume via Mechanical and Physical Properties of Substrate. Biophys. J. 2018;114:675–687. doi: 10.1016/j.bpj.2017.11.3785. PubMed DOI PMC
Nehls S., Nöding H., Karsch S., Ries F., Janshoff A. Stiffness of MDCK II Cells Depends on Confluency and Cell Size. Biophys. J. 2019;116:2204–2211. doi: 10.1016/j.bpj.2019.04.028. PubMed DOI PMC
Efremov Y.M., Velay-Lizancos M., Weaver C.J., Athamneh A.I., Zavattieri P.D., Suter D.M., Raman A. Anisotropy vs Isotropy in Living Cell Indentation with AFM. Sci. Rep. 2019;9:5757. doi: 10.1038/s41598-019-42077-1. PubMed DOI PMC
Reed J., Troke J.J., Schmit J., Han S., Teitell M.A., Gimzewski J.K. Live Cell Interferometry Reveals Cellular Dynamism During Force Propagation. ACS Nano. 2008;2:841–846. doi: 10.1021/nn700303f. PubMed DOI PMC
Rajagopal V., Holmes W.R., Lee P.V.S. Computational Modeling of Single-Cell Mechanics and Cytoskeletal Mechanobiology. Wires Syst. Biol. Med. 2018;10:e1407. doi: 10.1002/wsbm.1407. PubMed DOI PMC
Lopes dos Santos R., Campillo C. Studying Actin-Induced Cell Shape Changes Using Giant Unilamellar Vesicles and Reconstituted Actin Networks. Biochem. Soc. Trans. 2022;50:1527–1539. doi: 10.1042/BST20220900. PubMed DOI PMC
Cowman M.K., Schmidt T.A., Raghavan P., Stecco A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Research. 2015;4:622. doi: 10.12688/f1000research.6885.1. PubMed DOI PMC
Xie J., Najafi J., Le Borgne R., Verbavatz J.M., Durieu C., Sallé J., Minc N. Contribution of Cytoplasm Viscoelastic Properties to Mitotic Spindle Positioning. Proc. Natl. Acad. Sci. USA. 2022;119:e2115593119. doi: 10.1073/pnas.2115593119. PubMed DOI PMC
Rebenda D., Vrbka M., Čípek P., Toropitsyn E., Nečas D., Pravda M., Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. Materials. 2020;13:2659. doi: 10.3390/ma13112659. PubMed DOI PMC
Wang K., Sun X.H., Zhang Y., Zhang T., Zheng Y., Wei Y.C., Zhao P., Chen D.Y., Wu H.A., Wang W.H., et al. Characterization of Cytoplasmic Viscosity of Hundreds of Single Tumour Cells Based on Micropipette Aspiration. R. Soc. Open Sci. 2019;6:181707. doi: 10.1098/rsos.181707. PubMed DOI PMC
Hilšer P., Suchánková A., Mendová K., Filipič K.E., Daniel M., Vrbka M. A New Insight into More Effective Viscosupplementation Based on the Synergy of Hyaluronic Acid and Phospholipids for Cartilage Friction Reduction. Biotribology. 2021;25:100166. doi: 10.1016/j.biotri.2021.100166. DOI
Ungai-Salánki R., Csippa B., Gerecsei T., Péter B., Horvath R., Szabó B. Nanonewton Scale Adhesion Force Measurements on Biotinylated Microbeads with a Robotic Micropipette. J. Colloid Interface Sci. 2021;602:291–299. doi: 10.1016/j.jcis.2021.05.180. PubMed DOI
Wang M., Liu Z., Zhan W. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering. Langmuir. 2018;34:7509–7518. doi: 10.1021/acs.langmuir.8b00798. PubMed DOI
Ruozi B., Tosi G., Leo E., Vandelli M.A. Application of Atomic Force Microscopy to Characterize Liposomes as Drug and Gene Carriers. Talanta. 2007;73:12–22. doi: 10.1016/j.talanta.2007.03.031. PubMed DOI
Vorselen D., Piontek M.C., Roos W.H., Wuite G.J.L. Mechanical Characterization of Liposomes and Extracellular Vesicles, a Protocol. Front. Mol. Biosci. 2020;7:139. doi: 10.3389/fmolb.2020.00139. PubMed DOI PMC
Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Marcotti S., Reilly G.C., Lacroix D. Effect of Cell Sample Size in Atomic Force Microscopy Nanoindentation. J. Mech. Behav. Biomed. Mater. 2019;94:259–266. doi: 10.1016/j.jmbbm.2019.03.018. PubMed DOI
Cross S.E., Jin Y.S., Rao J., Gimzewski J.K. Applicability of AFM in Cancer Detection. Nat. Nanotechnol. 2009;4:72–73. doi: 10.1038/nnano.2009.036. PubMed DOI
Fischer-Cripps A.C. Introduction to Contact Mechanics. 2nd ed. Springer; New York, NY, USA: 2011. (Mechanical Engineering Series).
Ciulli E., Betti A., Forte P. The Applicability of the Hertzian Formulas to Point Contacts of Spheres and Spherical Caps. Lubricants. 2022;10:233. doi: 10.3390/lubricants10100233. DOI
Johnson K.L. One Hundred Years of Hertz Contact. Proc. Inst. Mech. Eng. 1982;196:363–378. doi: 10.1243/PIME_PROC_1982_196_039_02. DOI
Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 2004.
Popov V.L. Contact Mechanics and Friction. Springer; Berlin/Heidelberg, Germany: 2017. DOI
Hertz H. Ueber die Berührung fester elastischer Körper. J. für Die Reine Und Angew. Math. 1882;92:156–171.
Podio-Guidugli P., Favata A. The Boussinesq Problem. In: Podio-Guidugli P., Favata A., editors. Elasticity for Geotechnicians: A Modern Exposition of Kelvin, Boussinesq, Flamant, Cerruti, Melan, and Mindlin Problems. Springer International Publishing; Cham, Switzerland: 2014. pp. 79–114. DOI
Selvadurai A.P.S. On Boussinesq’s Problem for a Cracked Halfspace. J. Eng. Math. 2017;107:269–282. doi: 10.1007/s10665-017-9934-6. DOI
Selvadurai A.P.S. On Boussinesq’s Problem. Int. J. Eng. Sci. 2001;39:317–322. doi: 10.1016/S0020-7225(00)00043-4. DOI
Landau L.D., Lifšic E.M. Theory of Elastic. 3rd ed. Elsevier Butterworth Heinemann; Amsterdam, The Netherlands: 2009. Course of Theoretical Physics.