Staining Tissues with Basic Blue 7: A New Dual-Polarity Matrix for MALDI Mass Spectrometry Imaging

. 2025 Feb 11 ; 97 (5) : 2828-2836. [epub] 20250130

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39883587

Obtaining high-quality matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) images and the reproducibility of the technique depend strongly on the sample preparation protocol. The most crucial part is the application of the MALDI matrix, which often relies on expensive spraying or sublimation coaters. In this work, we present a new dual-polarity matrix for MALDI mass spectrometry imaging (MSI): Basic Blue 7 (BB7), which belongs to the group of triarylmethane dyes. Thanks to its good solubility in water, this matrix allows a quick and simple sample preparation protocol without the need for sophisticated spraying or sublimation instrumentation: dipping the glass with tissue into the dye solution. This technique closely resembles the staining methods employed in classical histopathology. The technique is demonstrated on MSI of lipids in mouse brain sections in positive and negative ion modes using a subatmospheric pressure MALDI source coupled with an orbital trap mass spectrometer. The results are compared with traditional matrices, such as 2,5-dihydroxybenzoic acid (DHB) and 1,5-diaminonaphthalene (DAN). BB7 excels, especially in negative ion mode, offering low background signals and high signal intensities of many lipid classes. Furthermore, the stained tissue can simply be inspected visually and allows basic histopathology annotation prior to MSI. Here, we demonstrate that staining offers excellent image quality, reproducible sample preparation, and the potential for automation and utilization for high spatial resolution MSI.

Zobrazit více v PubMed

Schulz S.; Becker M.; Groseclose M. R.; Schadt S.; Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr. Opin. Biotechnol. 2019, 55, 51–59. 10.1016/j.copbio.2018.08.003. PubMed DOI

Zhou Q. Q.; Fülöp A.; Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal. Bioanal. Chem. 2021, 413 (10), 2599–2617. 10.1007/s00216-020-03023-7. PubMed DOI PMC

Zhou D.; Guo S.; Zhang M.; Liu Y. J.; Chen T. J.; Li Z. L. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal. Chim. Acta 2017, 962, 52–59. 10.1016/j.aca.2017.01.043. PubMed DOI

Yang X. H.; Wu T.; Liu B. X.; Du Y. P.; Li H. Y.; Zhao S. L.; Lu Y. X. Matrix selection for polymer guanidine analysis by MALDI-TOF MS. Int. J. Mass Spectrom. 2013, 356, 1–6. 10.1016/j.ijms.2013.09.010. DOI

Baluya D. L.; Garrett T. J.; Yost R. A. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal. Chem. 2007, 79 (17), 6862–6867. 10.1021/ac070958d. PubMed DOI

Gustafsson O. J. R.; Eddes J. S.; Meding S.; McColl S. R.; Oehler M. K.; Hoffmann P. Matrix-assisted laser desorption/ionization imaging protocol for in situ characterization of tryptic peptide identity and distribution in formalin-fixed tissue. Rapid Commun. Mass Spectrom. 2013, 27 (6), 655–670. 10.1002/rcm.6488. PubMed DOI

Shafer C. C.; Neumann E. K. Optimized combination of MALDI MSI and immunofluorescence for neuroimaging of lipids within cellular microenvironments. Front. Chem. 2024, 12, 1334209.10.3389/fchem.2024.1334209. PubMed DOI PMC

Tuck M.; Grelard F.; Blanc L.; Desbenoit N. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Front. Chem. 2022, 10, 904688.10.3389/fchem.2022.904688. PubMed DOI PMC

Ryabchykov O.; Popp J.; Bocklitz T. Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples. Front. Chem. 2018, 6, 257.10.3389/fchem.2018.00257. PubMed DOI PMC

Tobias F.; Hummon A. Considerations for MALDI-Based Quantitative Mass Spectrometry Imaging Studies. J. Proteome Res. 2020, 19, 3620–3630. 10.1021/acs.jproteome.0c00443. PubMed DOI PMC

Hansen R. L.; Lee Y. J. High-Spatial Resolution Mass Spectrometry Imaging: Toward Single Cell Metabolomics in Plant Tissues. Chem. Rec. 2018, 18 (1), 65–77. 10.1002/tcr.201700027. PubMed DOI

Bao Z. B.; Yu D.; Fu J. X.; Gu J. C.; Xu J.; Qin L.; Hu H.; Yang C. Y.; Liu W. J.; Chen L. L.; Wu R.; Liu H. Q.; Xu H. L.; Guo H.; Wang L.; Zhou Y. J.; Li Q.; Wang X. D. 2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites. Anal. Chem. 2024, 96 (13), 5160–5169. 10.1021/acs.analchem.3c05235. PubMed DOI

Liu Y. Q.; Chen L. L.; Qin L.; Han M. M.; Li J. M.; Luo F. X.; Xue K.; Feng J. C.; Zhou Y. J.; Wang X. D. Enhanced in situ detection and imaging of lipids in biological tissues by using 2,3-dicyanohydroquinone as a novel matrix for positive-ion MALDI-MS imaging. Chem. Commun. 2019, 55 (83), 12559–12562. 10.1039/C9CC06961E. PubMed DOI

Huang P. S.; Huang C. Y.; Lin T. C.; Lin L. E.; Yang E. H.; Lee C. P.; Hsu C. C.; Chou P. T. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry. Anal. Chem. 2020, 92 (10), 7139–7145. 10.1021/acs.analchem.0c00570. PubMed DOI

Weissflog J.; Svatos A. 1,8-Di(piperidinyl)-naphthalene - rationally designed MAILD/MALDI matrix for metabolomics and imaging mass spectrometry. RSC Adv. 2016, 6 (79), 75073–75081. 10.1039/C6RA17237G. DOI

Dutta T.; Stekly T.; Kucera L.; Lemr K. Dual-polarity MALDI mass spectrometry and imaging of oil binders and fatty acids in artworks using cyanographene as a single matrix. Talanta 2022, 242, 123291.10.1016/j.talanta.2022.123291. PubMed DOI

Yang J. H.; Norris J. L.; Caprioli R. Novel vacuum stable ketone-based matrices for high spatial resolution MALDI imaging mass spectrometry. J. Mass Spectrom. 2018, 53 (10), 1005–1012. 10.1002/jms.4277. PubMed DOI

Li N.; Wang P.; Liu X. L.; Han C.; Ren W.; Li T.; Li X.; Tao F. Y.; Zhao Z. W. Developing IR-780 as a Novel Matrix for Enhanced MALDI MS Imaging of Endogenous High-Molecular-Weight Lipids in Brain Tissues. Anal. Chem. 2019, 91 (24), 15873–15882. 10.1021/acs.analchem.9b04315. PubMed DOI

Arafah K.; Longuespée R.; Desmons A.; Kerdraon O.; Fournier I.; Salzet M. Lipidomics for Clinical Diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) Method for Lipids Detection in MALDI Mass Spectrometry Imaging. OMICS: J. Integr. Biol. 2014, 18 (8), 487–498. 10.1089/omi.2013.0175. PubMed DOI

Harayama T.; Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19 (5), 281–296. 10.1038/nrm.2017.138. PubMed DOI

Murphy R. C.; Hankin J. A.; Barkley R. M. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res. 2009, 50, S317–S322. 10.1194/jlr.R800051-JLR200. PubMed DOI PMC

Dufresne M.; Thomas A.; Breault-Turcot J.; Masson J.; Chaurand P. Silver-Assisted Laser Desorption Ionization For High Spatial Resolution Imaging Mass Spectrometry of Olefins from Thin Tissue Sections. Anal. Chem. 2013, 85, 3318–3324. 10.1021/ac3037415. PubMed DOI

Wang H.-Y. J.; Post S. N. J. J.; Woods A. S. A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain sections. Int. J. Mass Spectrom. 2008, 278 (2–3), 143–149. 10.1016/j.ijms.2008.04.005. PubMed DOI PMC

Mielczarek P.; Slowik T.; Kotlinska J. H.; Suder P.; Bodzon-Kulakowska A. The Study of Derivatization Prior MALDI MSI Analysis-Charge Tagging Based on the Cholesterol and Betaine Aldehyde. Molecules 2021, 26 (9), 2737.10.3390/molecules26092737. PubMed DOI PMC

Angerer T. B.; Bour J.; Biagi J. L.; Moskovets E.; Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. J. Am. Soc. Mass Spectrom. 2022, 33 (5), 760–771. 10.1021/jasms.1c00327. PubMed DOI PMC

Schiller J.; Süss R.; Arnhold J.; Fuchs B.; Lessig J.; Müller M.; Petkovic M.; Spalteholz H.; Zschörnig O.; Arnold K. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res. 2004, 43 (5), 449–488. 10.1016/j.plipres.2004.08.001. PubMed DOI

Fuchs B.; Bischoff A.; Süss R.; Teuber K.; Schürenberg M.; Suckau D.; Schiller J. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures: a negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example. Anal. Bioanal. Chem. 2009, 395 (8), 2479–2487. 10.1007/s00216-009-3032-1. PubMed DOI

Lorkiewicz P.; Yappert M. C. 2-(2-Aminoethylamino)-5-nitropyridine as a basic matrix for negative-mode matrix-assisted laser desorption/ionization analysis of phospholipids. J. Mass Spectrom. 2009, 44 (1), 137–143. 10.1002/jms.1483. PubMed DOI

Thomas A.; Charbonneau J. L.; Fournaise E.; Chaurand P. Sublimation of New Matrix Candidates for High Spatial Resolution Imaging Mass Spectrometry of Lipids: Enhanced Information in Both Positive and Negative Polarities after 1,5-Diaminonapthalene Deposition. Anal. Chem. 2012, 84 (4), 2048–2054. 10.1021/ac2033547. PubMed DOI

Goodwin R. J. A. Sample preparation for mass spectrometry imaging: Small mistakes can lead to big consequences. J. Proteomics 2012, 75 (16), 4893–4911. 10.1016/j.jprot.2012.04.012. PubMed DOI

Li S. L.; Zhang Y. Y.; Liu J. A.; Han J. J.; Guan M.; Yang H.; Lin Y.; Xiong S. X.; Zhao Z. W. Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI. Sci. Rep. 2016, 6, 37903.10.1038/srep37903. PubMed DOI PMC

Gessel M. M.; Norris J. L.; Caprioli R. M. MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery. J. Proteomics 2014, 107, 71–82. 10.1016/j.jprot.2014.03.021. PubMed DOI PMC

Velickovic D.; Zhang G.; Bezbradica D.; Bhattacharjee A.; Pasa-Tolic L.; Sharma K.; Alexandrov T.; Anderton C. R.; Response Surface Methodology As a New Approach for Finding Optimal MALDI Matrix Spraying Parameters for Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2020, 31 (3), 508–516. 10.1021/jasms.9b00074. PubMed DOI PMC

Gemperline E.; Rawson S.; Li L. J. Optimization and Comparison of Multiple MALDI Matrix Application Methods for Small Molecule Mass Spectrometric Imaging. Anal. Chem. 2014, 86 (20), 10030–10035. 10.1021/ac5028534. PubMed DOI PMC

Hankin J.; Barkley R.; Murphy R. Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 2007, 18, 1646–1652. 10.1016/j.jasms.2007.06.010. PubMed DOI PMC

Morikawa-Ichinose T.; Fujimura Y.; Murayama F.; Yamazaki Y.; Yamamoto T.; Wariishi H.; Miura D. Improvement of Sensitivity and Reproducibility for Imaging of Endogenous Metabolites by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30 (8), 1512–1520. 10.1007/s13361-019-02221-7. PubMed DOI

Goodwin R. J.; MacIntyre L.; Watson D. G.; Scullion S. P.; Pitt A. R. A solvent-free matrix application method for matrix-assisted laser desorption/ionization imaging of small molecules. Rapid Commun. Mass Spectrom. 2010, 24 (11), 1682–1686. 10.1002/rcm.4567. PubMed DOI

Puolitaival S.; Burnum K.; Cornett D.; Caprioli R. Solvent-free matrix dry-coating for MALDI Imaging of phospholipids. J. Am. Soc. Mass Spectrom. 2008, 19, 882–886. 10.1016/j.jasms.2008.02.013. PubMed DOI PMC

Vergeiner S.; Schafferer L.; Haas H.; Müller T. Improved MALDI-TOF Microbial Mass Spectrometry Imaging by Application of a Dispersed Solid Matrix. J. Am. Soc. Mass Spectrom. 2014, 25 (8), 1498–1501. 10.1007/s13361-014-0923-y. PubMed DOI

Lewis L. M.; Indig G. L. Solvent effects on the spectroscopic properties of triarylmethane dyes. Dyes Pigm. 2000, 46 (3), 145–154. 10.1016/S0143-7208(00)00049-8. DOI

Hemalatha S.; Rajagobalan B.; Geethakrishnan T. Fabrication, Characterization of Basic Blue 7 Dye-Doped PVA Films and Their Third-Order Nonlinear Optical Properties. J. Fluoresc. 2023, 33, 2295–2304. 10.1007/s10895-023-03228-w. PubMed DOI

Koktavá M.; Valášek J.; Bezdeková D.; Prysiazhnyi V.; Adamová B.; Beneš P.; Navrátilová J.; Hendrych M.; Vlček P.; Preisler J.; Bednařík A. Metal Oxide Laser Ionization Mass Spectrometry Imaging of Fatty Acids and Their Double Bond Positional Isomers. Anal. Chem. 2022, 94 (25), 8928–8936. 10.1021/acs.analchem.2c00551. PubMed DOI

Sládková K.; Houska J.; Havel J. Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3114–3118. 10.1002/rcm.4230. PubMed DOI

Arunsankar N.; Prabakaran A.; Saravanan P.; Vimalan M.; Jeyaram S. Solvent Media on Nonlinear Optical Properties of Triarylmethane Dye via Facile Z-Scan Method. J. Fluoresc. 2023, 1–8. 10.1007/s10895-023-03529-0. PubMed DOI

Cong W.; Chen M.; Zhu Z.; Liu Z.; Nan J.; Ye W.; Ni M.; Zhao T.; Jin L. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis. Analyst 2013, 138, 1187–1194. 10.1039/c2an36079a. PubMed DOI

Eiersbrock F.; Orthen J.; Soltwisch J. Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal. Bioanal. Chem. 2020, 412, 6875–6886. 10.1007/s00216-020-02818-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...