KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept

. 2020 ; 8 () : e9750. [epub] 20200909

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32974092

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

A N Severtsov Institute of Ecology and Evolution RAS Moscow Russia

Agrosphere Institute IBG Forschungszentrum Jülich GmbH Jülich Germany

BC3 Basque Centre for Climate Change Scientific Campus of the University of the Basque Country Bilbao Bizkaia Spain

Biogeochemistry Group Forest Soils and Biogeochemistry Swiss Federal Research Institute WSL Birmensdorf Switzerland

Biogeography and Global Change National Museum of Natural Sciences Spanish National Research Council Madrid Spain

Comparative Plant and Fungal Biology Royal Botanic Gardens Kew London UK

CREAF Cerdanyola del Vallès Spain

Departamento de Ecología y Biología Animal Universidad de Vigo Vigo Spain

Department of Biodiversity Conservation and Ecosystem Restoration ARAID IPE CSIC Jaca Spain

Department of Biogeochemistry and Soil Quality Norwegian Institute of Bioeconomy Research Aas Norway

Department of Biology Plants and Ecosystems Universiteit Antwerpen Antwerpen Belgium

Department of Bioscience Aarhus University Silkeborg Denmark

Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam Netherlands

Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden

Earth and Life Institute UCLouvain Louvain la Neuve Belgium

Forest Research Alice Holt Lodge Farnham UK

Forest Soils and Biogeochemistry Swiss Federal Research Institute WSL Birmensdorf Switzerland

Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen Netherlands

IKERBASQUE Basque Foundation for Science Bilbao Spain

Institute for Crop and Soil Science Julius Kühn Institut Braunschwei Germany

Institute for Environmental Studies Charles University Prague Czech Republic

Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Institute of Ecology and Environmental Sciences IRD UPEC CNRS INRA Sorbonne Université Paris France

Institute of Forest Ecology Department of Forest and Soil Sciences University of Natural Resources and Life Sciences Vienna Austria

International Institute for Applied Systems Analysis IIASA Laxenburg Austria

OVAM Flemish Institute for Materials and Soils Mechelen Belgium

Slovenian Forestry Institute Ljubljana Slovenia

Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain

Zobrazit více v PubMed

Abdel-Hamid AM, Solbiati JO, Cann IKO. Insights into lignin degradation and its potential industrial applications. In: Sariaslani S, Geoffrey MG, editors. Advances in Applied Microbiology. Waltham: Academic Press; 2013. pp. 1–28. PubMed

Abramoff RZ, Finzi AC. Are above- and below-ground phenology in sync? New Phytologist. 2015;205(3):1054–1061. PubMed

Abramoff R, Xu X, Hartman M, O’Brien S, Feng W, Davidson E, Finzi A. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry. 2018;137(1–2):51–71. doi: 10.1007/s10533-017-0409-7. DOI

Adamczyk B, Sietio OM, Strakova P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications. 2019;10(1):3982. doi: 10.1038/s41467-019-11993-1. PubMed DOI PMC

Adhikari K, Hartemink AE. Linking soils to ecosystem services—A global review. Geoderma. 2016;262:101–111. doi: 10.1016/j.geoderma.2015.08.009. DOI

Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model. Soil Biology and Biochemistry. 2015;88:390–402. doi: 10.1016/j.soilbio.2015.06.008. DOI

Aitkenhead MJ, Albanito F, Jones MB, Black HIJ. Development and testing of a process-based model (MOSES) for simulating soil processes, functions and ecosystem services. Ecological Modelling. 2011;222(20–22):3795–3810. doi: 10.1016/j.ecolmodel.2011.09.014. DOI

Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letters. 2005;8(6):626–635. doi: 10.1111/j.1461-0248.2005.00756.x. DOI

Andersen DC. Below-ground herbivory in natural communities: a review emphasizing fossorial animals. Quarterly Review of Biology. 1987;62(3):261–286. doi: 10.1086/415512. DOI

Anderson JM, Healey IN. Seasonal and inter-specific variation in major components of the gut contents of some woodland Collembola. Journal of Animal Ecology. 1972;41(2):359–368. doi: 10.2307/3473. DOI

Andrews MY, Leake JR, Palmer BG, Banwart SA, Beerling DJ. Plant and mycorrhizal driven silicate weathering: quantifying carbon flux and mineral weathering processes at the laboratory mesocosm scale. Applied Geochemistry. 2011;26:314–316.

Angst Š, Mueller CW, Cajthaml T, Angst G, Lhotáková Z, Bartuška M, Špaldoňová A, Frouz J. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma. 2017;289:29–35. doi: 10.1016/j.geoderma.2016.11.017. DOI

Angst G, Mueller CW, Prater I, Angst Š, Frouz J, Jílková V, Peterse F, Nierop KGJ. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Communications Biology. 2019;2(1):441. doi: 10.1038/s42003-019-0684-z. PubMed DOI PMC

Averill C. Slowed decomposition in ectomycorrhizal ecosystems is independent of plant chemistry. Soil Biology and Biochemistry. 2016;102:52–54. doi: 10.1016/j.soilbio.2016.08.003. DOI

Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505(7484):543–545. doi: 10.1038/nature12901. PubMed DOI

Baas Becking LGM. Geobiologie of inleiding tot de milieukunde. Hague: W.P. Van Stockum & Zoon; 1934.

Badri DV, Vivanco JM. Regulation and function of root exudates. Plant, Cell & Environment. 2009;32(6):666–681. doi: 10.1111/j.1365-3040.2009.01926.x. PubMed DOI

Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology. 2000;124(3):949–957. doi: 10.1104/pp.124.3.949. PubMed DOI PMC

Baldrian P, Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews. 2008;32(3):501–521. doi: 10.1111/j.1574-6976.2008.00106.x. PubMed DOI

Bandounas L, Wierckx NJ, De Winde JH, Ruijssenaars HJ. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology. 2011;11(1):94. doi: 10.1186/1472-6750-11-94. PubMed DOI PMC

Bardgett RD, Usher MB, Hopkins DW. Biological diversity and function in soils. Cambridge: Cambridge University Press; 2005. p. 411.

Bardgett RD, Van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. PubMed

Barot S, Blouin M, Fontaine S, Jouquet P, Lata J-C, Mathieu J. A tale of four stories: soil ecology, theory, evolution and the publication system. PLOS ONE. 2007;2(11):1248. doi: 10.1371/journal.pone.0001248. PubMed DOI PMC

Barot S, Rossi JP, Lavelle P. Self-organization in a simple consumer–resource system, the example of earthworms. Soil Biology and Biochemistry. 2007;39(9):2230–2240. doi: 10.1016/j.soilbio.2007.03.021. DOI

Baskaran P, Hyvönen R, Berglund SL, Clemmensen KE, Ågren GI, Lindahl BD, Manzoni S. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytologist. 2017;213(3):1452–1465. doi: 10.1111/nph.14213. PubMed DOI

Bastardie F, Cannavacciuollo M, Capowiez Y, Dreuzy J-R, Bellido A, Cluzeau D. A new simulation for modelling the topology of earthworm burrow systems and their effects on macropore flow in experimental soils. Biology and Fertility of Soils. 2002;36(2):161–169. doi: 10.1007/s00374-002-0514-0. DOI

Bastardie F, Capowiez Y, Cluzeau D. 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Applied Soil Ecology. 2005;30(1):34–46. doi: 10.1016/j.apsoil.2005.01.001. DOI

Belfield W. The arthropoda of the soil in a West African pasture. Journal of Animal Ecology. 1956;25(2):275–287. doi: 10.2307/1926. DOI

Bengtsson J, Setälä H, Zheng DW. Food webs and nutrient cycling in soils: interactions and positive feedbacks. In: Polis GA, Winemiller KO, editors. Food Webs. Boston: Springer; 1996.

Berg M, De Ruiter PC, Didden WAM, Janssen MPM, Schouten AJ, Verhoef HA. Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos. 2001;94(1):130–142. doi: 10.1034/j.1600-0706.2001.09121.x. DOI

Beven K. A century of Denial: preferential and nonequilibrium water flow in soils, 1864–1984. Vadose Zone Journal. 2018;17(1):180153. doi: 10.2136/vzj2018.08.0153. DOI

Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist. 2003;157(3):465–473. doi: 10.1046/j.1469-8137.2003.00714.x. PubMed DOI

Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C. Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. European Journal of Soil Biology. 2006;42:70–78. doi: 10.1016/j.ejsobi.2006.06.003. DOI

Blanchart E, Albrecht A, Alegre J, Duboisset A, Giloe C, Pashanasf B, Lavelle P, Brussaard L. Effects of earthworms on soil structural and physical properties. In: Lavelle P, Brussaard L, Hendrix P, editors. Earthworm management in tropical agroecosytems. New York: CABI Publishing; 1999. pp. 149–172.

Blanchart E, Marilleau N, Chotte JL, Drogoul A, Perrier E, Cambier C. SWORM: an agent-based model to simulate the effect of earthworms on soil structure. European Journal of Soil Science. 2009;60(1):13–21. doi: 10.1111/j.1365-2389.2008.01091.x. DOI

Bohlen PJ, Groffman PM, Fahey TJ, Fisk MC, Suárez E, Pelletier DM, Fahey RT. Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems. 2004;7(1):1–12. doi: 10.1007/s10021-003-0126-z. DOI

Bortier M, Andivia E, Genon JG, Grebenc T, Deckmyn G. Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling: a modelling approach. Central European Forestry Journal. 2018;64(2):79–95. doi: 10.1515/forj-2017-0037. DOI

Bossuyt H, Six J, Hendrix PF. Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry. 2005;37(2):251–258. doi: 10.1016/j.soilbio.2004.07.035. DOI

Bottinelli N, Jouquet P, Capowiez Y, Podwojewski P, Grimaldi M, Peng X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research. 2015;146:118–124. doi: 10.1016/j.still.2014.01.007. DOI

Bottomley PJ, Taylor AE, Myrold DD. A consideration of the relative contributions of different microbial subpopulations to the soil N cycle. Frontiers in Microbiology. 2012;3:373. doi: 10.3389/fmicb.2012.00373. PubMed DOI PMC

Bouché M. Strategies lombriciennes. Ecological Bulletins. 1977;25:122–132.

Bouma J. Using soil survey data for quantitative land evaluation. Advanced Plant & Soil Science. 1989;9:177–213.

Briones MJI. Soil fauna and soil functions: a jigsaw puzzle. Frontiers in Environmental Science. 2014;2:125. doi: 10.3389/fenvs.2014.00007. DOI

Briones MJI, Carreira J, Ineson P. Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment. Applied Soil Ecology. 1998;9(1–3):289–294. doi: 10.1016/S0929-1393(97)00055-3. DOI

Briones MJI, Ineson P. Use of 14C carbon dating to determine feeding behaviour of enchytraeids. Soil Biology & Biochemistry. 2002;34(6):881–884. doi: 10.1016/S0038-0717(02)00010-X. DOI

Briones MJI, Ineson P, Heinemeyer A. Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approach. Global Change Biology. 2007;13(11):2252–2269. doi: 10.1111/j.1365-2486.2007.01434.x. DOI

Briones MJI, Ineson P, Piearce TG. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology. 1997;6(2):117–134. doi: 10.1016/S0929-1393(97)00004-8. DOI

Briones MJI, Ineson P, Poskitt J. Climate change and Cognettia sphagnetorum: effects on carbon dynamics in organic soils. Functional Ecology. 1998;12(4):528–535. doi: 10.1046/j.1365-2435.1998.00218.x. DOI

Briones MJI, Poskitt J, Ostle N. Influence of warming and enchytraeid activities on soil CO2 and CH4 fluxes. Soil Biology and Biochemistry. 2004;36(11):1851–1859. doi: 10.1016/j.soilbio.2004.04.039. DOI

Briones M, Ostle N, Garnett M. Invertebrates increase the sensitivity of non-labile soil carbon to climate change. Soil Biology and Biochemistry. 2007;39:816–818. doi: 10.1016/j.soilbio.2006.09.007. DOI

Brown GG. How do earthworms affect microfloral and faunal community diversity? Plant and Soil. 1995;170(1):209–231. doi: 10.1007/BF02183068. DOI

Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 2018;220(4):1108–1115. doi: 10.1111/nph.14976. PubMed DOI

Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Miguel Pérez C, Persson H, Ostonen I. Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant and Soil. 2013;362(1–2):357–372. doi: 10.1007/s11104-012-1313-5. DOI

Brussaard L. Biodiversity and ecosystem functioning in soil. Ambio. 1997;26:563–570. PubMed PMC

Bödeker ITM, Lindahl BD, Olson A, Clemmensen KE. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Functional Ecology. 2016;30(12):1967–1978. doi: 10.1111/1365-2435.12677. DOI

Bödeker ITM, Nygren CM, Taylor AF, Olson Å., Lindahl BD. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME Journal. 2009;3(12):1387–1395. doi: 10.1038/ismej.2009.77. PubMed DOI

Bünemann EK, Giulia Bongiorno G, Zhanguo Bai Z, Rachel E, Creamer RE, De Deyn G, De Goede R, Luuk Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, Van Groenigen JW, Lijbert Brussaard L. Soil quality—a critical review. Soil Biology and Biochemistry. 2018;120:105–125. doi: 10.1016/j.soilbio.2018.01.030. DOI

Cairney JWG. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry. 2012;47:198–208. doi: 10.1016/j.soilbio.2011.12.029. DOI

Camino-Serrano M, Guenet B, Luyssaert S, Ciais P, Bastrikov V, DeVos B, Gielen B, Gleixner G, Jornet-Puig A, Kaiser K, Kothawala D, Lauerwald R, Peñuelas J, Schrumpf M, Vicca S, Vuichar N, Walmsley D, Janssens IA. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe. Geoscientific Model Development. 2018;11(3):937–957. doi: 10.5194/gmd-11-937-2018. DOI

Campbell EE, Parton WJ, Soong JL, Paustian K, Hobb NT, Cotrufo MF. Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model. Soil Biology and Biochemistry. 2016;100:160–174. doi: 10.1016/j.soilbio.2016.06.007. DOI

Campbell EE, Paustian K. Current developments in soil organic matter modeling and the expansion of model applications: a review. Environmental Research Letters. 2015;10(12):123004. doi: 10.1088/1748-9326/10/12/123004. DOI

Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science. 2019;10:157. doi: 10.3389/fpls.2019.00157. PubMed DOI PMC

Capowiez Y, Cadoux S, Bouchand P, Ruy S, Roger-Estrade J, Richard G, Boizard H. The influence of tillage type and compaction on earthworm communities and the consequences for macroporosity and water infiltration in crop fields. Soil and Tillage Research. 2009;105(2):209–216. doi: 10.1016/j.still.2009.09.002. DOI

Capowiez Y, Sammartino S, Michel E. Burrow systems of endogeic earthworms: effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia. 2014;57(4–6):303–309. doi: 10.1016/j.pedobi.2014.04.001. DOI

Carrera N, Barreal ME, Gallego PP, Briones MJI. Soil invertebrates control peatland C fluxes in response to warming. Functional Ecology. 2009;23(3):637–648. doi: 10.1111/j.1365-2435.2009.01560.x. DOI

Carrera C, Martínez MJ, Dardanelli J, Balzarini M. Environmental variation and correlation of seed components in nontransgenic soybeans: protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Science. 2011;51(2):800–809. doi: 10.2135/cropsci2010.06.0314. DOI

CDC. Georg LK. Public Domain Picture: This micrograph reveals the terminal chlamydospores of the fungus Microsporum audouinii. 2012. http://www.publicdomainfiles.com/show_file.php?id=13529099413553 http://www.publicdomainfiles.com/show_file.php?id=13529099413553

Chenu C, Plante AF. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo-mineral complex’. European Journal of Soil Science. 2006;57(4):596–607. doi: 10.1111/j.1365-2389.2006.00834.x. DOI

Chertov O, Komarov A, Shaw C, Bykhovets S, Frolov P, Shanin V, Grabarnik P, Priputina I, Zubkova E, Shashkov M. Romul_Hum—a model of soil organic matter formation coupling with soil biota activity: II. Parameterisation of the soil food web biota activity activity. Ecological Modelling. 2017a;345:140–149.

Chertov O, Shaw C, Shashkov M, Komarov A, Bykhovets S, Shaninc V, Grabarnik P, Frolov P, Kalinina O, Priputina I, Zubkova E. Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm. Ecological Modelling. 2017b;345:125–139. doi: 10.1016/j.ecolmodel.2016.10.024. DOI

Coleman DC, Hendrix PF. Invertebrates as webmasters in ecosystems. Wallingford: CABI Publishing; 2000.

Collins NJ, Baker JH, Tilbrook PJ. Signy Island, maritime Antarctic. In: Rosswall T, Heal OW, editors. Structure and Function of Tundra Ecosystems. Stockholm: Swedish Natural Research Council; 1975. pp. 345–374.

Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K. Tree species is the major factor explaining C:N ratios in European forest soils. Forest Ecology and Management. 2014;311:3–16. doi: 10.1016/j.foreco.2013.06.047. DOI

Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in Microbiology. 2018;9:1636. doi: 10.3389/fmicb.2018.01636. PubMed DOI PMC

Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology. 2013;19(4):988–995. doi: 10.1111/gcb.12113. PubMed DOI

Coulis M, Hättenschwiler S, Rapior S, Coq S. The fate of condensed tannins during litter consumption by soil animals. Soil Biology and Biochemistry. 2009;41(12):2573–2578. doi: 10.1016/j.soilbio.2009.09.022. DOI

Crawford JW, Deacon L, Grinev D, Harris JA, Ritz K, Brajesh K, Singh BK, Young I. Microbial diversity affects self-organization of the soil–microbe system with consequences for function. Journal of the Royal Society Interface. 2012;71:1302–1310. doi: 10.1098/rsif.2011.0679. PubMed DOI PMC

Curiel Yuste J, Penuels J, Estiarte M, Garcia-mas J, Mattana S, Ogaya R, Pujol M, Sardans J. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Global Change Biology. 2011;17(3):1475–1486. doi: 10.1111/j.1365-2486.2010.02300.x. DOI

Curry JP, Schmidt O. The feeding ecology of earthworms—a review. Pedobiologia. 2006;50(6):463–477. doi: 10.1016/j.pedobi.2006.09.001. DOI

Dalal RC, Allen DE, Livesley SJ, Richards G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil. 2008;309(1–2):43–76. doi: 10.1007/s11104-007-9446-7. DOI

Daly KR, Tracy SR, Crout NMJ, Mairhofer S, Pridmore TP, Mooney SJ, Roose T. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling. Plant, Cell & Environment. 2017;41(1):121–133. doi: 10.1111/pce.12983. PubMed DOI

Dangerfield JM, McCarthy TS, Ellery WN. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology. 1998;14(4):507–520. doi: 10.1017/S0266467498000364. DOI

Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formánek P. Enzymatic degradation of lignin in soil: a review. Sustainability. 2017;9(7):1163. doi: 10.3390/su9071163. DOI

De Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews. 2005;29(4):795–811. doi: 10.1016/j.femsre.2004.11.005. PubMed DOI

De Graaff M-A, Adkins J, Kardol P, Throop HL. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil. 2015;1(1):257–271. doi: 10.5194/soil-1-257-2015. DOI

De Ruiter PC, Neutel AM, Moore JC. Food webs and nutrient cycling in agro-ecosystems. Trends in Ecology & Evolution. 1994;9(10):378–383. doi: 10.1016/0169-5347(94)90059-0. PubMed DOI

De Vries FT, Caruso T. Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biology and Biochemistry. 2016;102:4–9. doi: 10.1016/j.soilbio.2016.06.023. PubMed DOI PMC

De Vries FT, Hoffland E, Van Eekeren N, Brussaard L, Bloem J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry. 2006;38(8):2092–2103. doi: 10.1016/j.soilbio.2006.01.008. DOI

De Vries FT, Thebault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjornlund L, Jorgensen HB, Brady MV, Christensen S, De Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, Van der Putten WH, Wolters V, Bardgett RD. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(35):14296–14301. doi: 10.1073/pnas.1305198110. PubMed DOI PMC

Dean WRJ, Milton SJ, Klotz S. The role of ant nest-mounds in maintaining small-scale patchiness in dry grasslands in Central Germany. Biodiversity and Conservation. 1999;6(9):1293–1307. doi: 10.1023/A:1018313025896. DOI

Decaëns T, Rangel AF, Asakawa N, Thomas RJ. Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biology and Fertility of Soils. 1999;30(1–2):20–28. doi: 10.1007/s003740050582. DOI

Deckmyn G, Campioli M, Muys B, Kraigher H. Simulating C cycles in forest soils: Including the active role of micro-organisms in the ANAFORE forest model. Ecological Modelling. 2011;222(12):1972–1985. doi: 10.1016/j.ecolmodel.2011.03.011. DOI

Deckmyn G, Meyer A, Smits MM, Ekblad A, Grebenc T, Komarov A, Kraigher H. Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research. 2014;44(6):535–553.

Deckmyn G, Verbeeck H, Op de Beeck M, Vansteenkiste D, Steppe K, Ceulemans R. ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modeling. 2008;215:345–368.

Degens BP. Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Soil Research. 1997;35(3):431–460. doi: 10.1071/S96016. DOI

Deng H. A review of diversity-stability relationship of soil microbial community: what do we not know? Journal of Environmental Sciences. 2012;24(6):1027–1035. doi: 10.1016/S1001-0742(11)60846-2. PubMed DOI

Dervash M, Bhat R, Mushtaq N, Singh V. Dynamics and importance of soil mesofauna. https://www.researchgate.net/publication/325119590_Dynamics_and_Importance_of_Soil_Mesofauna International Journal of Advance Research in Science and Engineering. 2018;7(4)

Didden W. Ecology of terrestrial Enchytraeidae. Pedobiologia. 1993;37:2–29.

Dignac M, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron P-A, Nunan N, Roumet C, Basile-Doelsch I. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies—a review. Agronomy for Sustainable Development. 2017;37(2):14. doi: 10.1007/s13593-017-0421-2. DOI

Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ. Modelling root–soil interactions using three-dimensional models of root growth, architecture and function. Plant and Soil. 2013;372(1–2):93–124. doi: 10.1007/s11104-013-1769-y. DOI

Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology. 2012;18(6):1781–1796. doi: 10.1111/j.1365-2486.2012.02665.x. DOI

Duputel M, Van Hoye F, Toucet J, Gérard F. Citrate adsorption can decrease soluble phosphate concentration in soil: experimental and modeling evidence. Applied Geochemistry. 2013;39:85–92. doi: 10.1016/j.apgeochem.2013.09.017. DOI

Dwivedi D, Riley WJ, Torn MS, Spycher N, Maggi F, Tang JY. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biology and Biochemistry. 2017;107:244–259. doi: 10.1016/j.soilbio.2016.12.019. DOI

Dzotsi KA, Jones JW, Adiku SGK, Naab JB, Singh U, Porter CH, Gijsman AJ. Modeling soil and plant phosphorus within DSSAT. Ecological Modelling. 2010;221(23):2839–2849. doi: 10.1016/j.ecolmodel.2010.08.023. DOI

Edwards WM, Shipitalo MJ, Owens LB, Norton LD. Water and nitrate movement in earthworm burrows within long-term no-till cornfields. Journal of Soil Water Conservation. 1989;44:240–243.

Eissenstat DM, Wells CE, Yanai RD, Whitback JL. Building roots in a changing environment: implications for root longevity. New Phytologist. 2000;147(1):33–42. doi: 10.1046/j.1469-8137.2000.00686.x. DOI

Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk G, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil. 2013;366(1–2):1–27. doi: 10.1007/s11104-013-1630-3. DOI

Fan J, McConkey B, Wang H, Janzen H. Root distribution by depth for temperate agricultural crops. Field Crops Research. 2016;189:68–74. doi: 10.1016/j.fcr.2016.02.013. DOI

Farmer D, Sivapalan M, Jothityangkoon C. Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: downward approach to water balance analysis. Water Resources Research. 2003;39(2):1035. doi: 10.1029/2001WR000328. DOI

Fernandez CW, Kennedy PG. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytologist. 2016;209(4):1382–1394. doi: 10.1111/nph.13648. PubMed DOI

Ferris H, Venette R, Van der Meulen H, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant and Soil. 1998;203(2):159–171. doi: 10.1023/A:1004318318307. DOI

Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecology Letters. 2009;12(11):1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x. PubMed DOI

Filser J, Faber JH, Tiunov AV, Brussaard L, Frouz J, De Deyn G, Uvarov AV, Berg MP, Lavelle P, Loreau M, Wall DH, Querner P, Eijsackers H, Jiménez JJ. Soil fauna: key to new carbon models. Soil. 2016;2(4):565–582. doi: 10.5194/soil-2-565-2016. DOI

Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen M-R, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E. Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.) Plant Biosystems—An International Journal Dealing with all Aspects of Plant Biology. 2007;141(3):394–405. doi: 10.1080/11263500701625897. DOI

Finér L, Ohashi M, Noguchi K, Hirano Y. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management. 2011;261(2):265–277. doi: 10.1016/j.foreco.2010.10.016. DOI

Folgarait PJ. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation. 1998;7(9):1221–1244. doi: 10.1023/A:1008891901953. DOI

Fontaine S, Barot S. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecology Letters. 2005;8(10):1075–1087. doi: 10.1111/j.1461-0248.2005.00813.x. DOI

Foster R. Microenvironments of soil microorganisms, Fungal biodiversity and their role in soil health. Biology and Fertility of Soils. 1988;6(3):189–203. doi: 10.1007/BF00260816. DOI

Frąc M, Hannula SE, Bełka M, Jędryczka M. Fungal biodiversity and their role in soil health. Frontine in Microbiology. 2018;9:707. PubMed PMC

Franklin O, Näsholm T, Högberg P, Högberg MN. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist. 2014;203:657–666. PubMed PMC

Frey S, Elliott E, Paustian K, Peterson G. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology and Biochemistry. 2000;32(5):689–698. doi: 10.1016/S0038-0717(99)00205-9. DOI

Frouz J. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma. 2018;332:161–172. doi: 10.1016/j.geoderma.2017.08.039. DOI

Frouz J, Keplin B, Pižl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balík V, Háněl L, Materna J, Düker Ch, Chalupský J, Rusek J, Heinkele T. Soil biota and upper soil layer development in two contrasting postmining chronosequences. Ecological Engineering. 2001;17(2–3):275–284. doi: 10.1016/S0925-8574(00)00144-0. DOI

Frouz J, Kuraz V. Soil fauna and soil physical properties. In: Frouz J, editor. Soil Biota and Ecosystem Development in Post Mining Sites. Boca Raton: CRC Press; 2013. pp. 265–278.

Frouz J, Novakova A, Jones TH. The potential effect of high atmospheric CO2 on soil fungi-invertebrate interactions. Global Change Biology. 2002;8(4):339–344. doi: 10.1046/j.1354-1013.2001.00474.x. DOI

Frouz J, Roubíčková A, Heděnec P, Tajovský K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. European Journal of Soil Biology. 2015;68:264. doi: 10.1016/j.ejsobi.2015.03.002. DOI

Frouz J, Santruckova H, Elhottova D. The effect of bibionid larvae feeding on the microbial community of litter and on reconsumed excrements. Pedobiologia. 1999;43(3):221–230.

Frouz J, Šimek M. Short term and long term effects of bibionid (Diptera: Bibionidae) larvae feeding on microbial respiration and alder litter decomposition. European Journal of Soil Biology. 2009;45(2):192–197. doi: 10.1016/j.ejsobi.2008.09.012. DOI

Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends in Plant Science. 2019;24(2):165–176. doi: 10.1016/j.tplants.2018.10.011. PubMed DOI

Geethanjali P, Jayashankar M. A review on litter decomposition by soil fungal community. IOSR Journal of Pharmacy and Biological Sciences. 2016;11(4):1–3. doi: 10.9790/3008-1104030103. DOI

Geisen S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry. 2016;102:22–25. doi: 10.1016/j.soilbio.2016.06.013. DOI

Geisen S, Briones MJ, Gan H, Behan-Pelletier VM, Friman VP, De Groot GA, Hannula SE, Lindo Z, Philippot L, Tiunov AV, Wall DH. A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry. 2019;136:107536. doi: 10.1016/j.soilbio.2019.107536. DOI

Gleixner G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecological Research. 2013;28(5):683–695. doi: 10.1007/s11284-012-1022-9. DOI

Gobin A, Campling P, Janssen L, Desmet N, Van Delden H, Hurkens J, Lavelle P, Berman S. Soil organic matter management across the EU—best practices, constraints and trade-offs, final report for the European Commission’s DG environment. 2011. https://ec.europa.eu/environment/soil/som_en.htm https://ec.europa.eu/environment/soil/som_en.htm

Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil. 2006;281(1–2):15–24. doi: 10.1007/s11104-005-3701-6. DOI

Goddéris Y, Schott J, Brantley SL. Reactive transport models of weathering. Elements. 2019;15(2):103–106. doi: 10.2138/gselements.15.2.103. DOI

Gomiero T. Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability. 2016;8(3):281. doi: 10.3390/su8030281. DOI

Graham EB, Wieder WR, Leff JW, Weintraub SR, Townsend AR, Cleveland CC, Philippot L, Nemergut DR. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biology and Biochemistry. 2014;68:279–282. doi: 10.1016/j.soilbio.2013.08.023. DOI

Grandy AS, Wieder WR, Wickings K, Kyker-Snowman E. Beyond microbes: are fauna the next frontier in soil biogeochemical models? Soil Biology and Biochemistry. 2016;102:40–44. doi: 10.1016/j.soilbio.2016.08.008. DOI

Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology. 1997;5(1):29–56. doi: 10.1016/S0929-1393(96)00126-6. DOI

Gregory AS, Ritz K, McGrath SP, Quinton JN, Goulding KWT, Jones RJA, Harris JA, Bol R, Wallace P, Pilgrim ES, Whitmore AP. A review of the impacts of degradation threats on soil properties in the UK. Soil Use and Management. 2015;31(Suppl. 1):1–15. doi: 10.1111/sum.12212. PubMed DOI PMC

Griffiths B, Ritz K, Ebblewhite N, Dobson G. Soil microbial community structure: effects of substrate loading rates. Soil Biology and Biochemistry. 1998;31(1):145–153. doi: 10.1016/S0038-0717(98)00117-5. DOI

Guggenberger G, Kaiser K. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma. 2003;113(3–4):293–310. doi: 10.1016/S0016-7061(02)00366-X. DOI

Gunina A, Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance. Soil Biology and Biochemistry. 2014;71:95–104. doi: 10.1016/j.soilbio.2014.01.011. DOI

Gunnarsson T, Sundin P, Tunlid A. Importance of leaf litter fragmentation for bacterial growth. Oikos. 1988;52(3):303–308. doi: 10.2307/3565203. DOI

Gupta VVSR, Germida JJ. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biology and Biochemistry. 2015;80:A3–A9. doi: 10.1016/j.soilbio.2014.09.002. DOI

Guswa AJ, Celia MA, Rodriguez-Iturbe I. Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research. 2002;38(9):5-1–5-15. doi: 10.1029/2001WR000826. DOI

Hale WG. A population study of moorland Collembola. Pedobiologia. 1966;6:65–99.

Hale CM, Frelich LE, Reich PB, Pastor J. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystems. 2005;8:911–927. doi: 10.1007/s10021-005-0066-x. DOI

Heal OW, Jones HE, Whittaker JB. Structure and Function of tundra ecosystems. In: Rosswall T, Heal OW, editors. Ecological Bulletins 20. Rosswall, Stockholm: Liber Tryck; 1975. pp. 295–320.

Helliwell JR, Miller AJ, Whalley WR, Mooney SJ, Sturrock CJ. Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biology and Biochemistry. 2014;74:138–147. doi: 10.1016/j.soilbio.2014.03.009. DOI

Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytologist. 2016;209(4):1693–1704. doi: 10.1111/nph.13729. PubMed DOI

Hendrickx JMH, Flury M. Uniform and preferential flow, mechanisms in the vadose zone, conceptual models of flow and transport in the fractured vadose zone. Washington, D.C.: National Research Council, National Academy Press; 2001. pp. 149–187.

Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology. 2011;156(3):1078–1086. doi: 10.1104/pp.111.175331. PubMed DOI PMC

Hirsch PR, Jhurreea D, Williams JK, Philip J, Murray PJ, Scott T, Misselbrook TH, Goulding KWT, Clark IM. Soil resilience and recovery: rapid community responses to management changes. Plant and Soil. 2017;412:283–297. PubMed PMC

Ho A, Di Lonardo P, Bodelier P. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology. 2017;93(3) doi: 10.1093/femsec/fix006. PubMed DOI

Hobbie JE, Hobbie EA. N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology. 2006;87(4):816–822. doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2. PubMed DOI

Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia. 2010;162(2):505–513. doi: 10.1007/s00442-009-1479-6. PubMed DOI

Hochdanz E. 1876. https://commons.wikimedia.org/wiki/File:Melolontha.melolontha.female.-.calwer.19.04.jpg https://commons.wikimedia.org/wiki/File:Melolontha.melolontha.female.-.calwer.19.04.jpg

Hopkin S. Biology of the springtails. Oxford: Oxford University Press; 1997. p. 330.

Hopkins DW, Wheatley RE, Robinson D. Stable isotope studies of soil nitrogen. In: Griffiths H, editor. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford: BIOS Scientific Publishers; 1998. pp. 75–88.

Hoy CW, Grewal PS, Lawrence JL, Jagdale G, Acosta N. Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species. Biological Control. 2008;46(3):371–379. doi: 10.1016/j.biocontrol.2008.06.001. DOI

Huang C-Y, Hendrix PF, Fahey TJ, Bohlen PJ, Groffman PM. A simulation model to evaluate the impacts of invasive earthworms on soil carbon dynamics. Ecological Modelling. 2010;221(20):2447–2457. doi: 10.1016/j.ecolmodel.2010.06.023. DOI

Hunt HW. A simulation model for decomposition in grasslands. Ecology. 1977;58(3):469–484. doi: 10.2307/1938998. DOI

Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Reid CPP, Rose SL, Morley CR. The detrital food-web in a shortgrass prairie. Biology and Fertility of Soils. 1987;3:57–68.

Ineson P, Leonard MA, Anderson JM. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biology and Biochemistry. 1982;14(6):601–605. doi: 10.1016/0038-0717(82)90094-3. DOI

Jarvis N, Koestel J, Larsbo M. Understanding preferential flow in the vadose zone: recent advances and future prospects. Vadose Zone Journal. 2016;15(12):75. doi: 10.2136/vzj2016.09.0075. DOI

Javaux M, Couvreur V, Vanderborght J, Vereecken H. Root water uptake: from three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone Journal. 2013;12(4):1–16. doi: 10.2136/vzj2013.02.0042. DOI

Javaux M, Schröder T, Vanderborght J, Vereecken H. Use of a three-dimensional detailed modeling approach for predicting root water uptake all rights reserved: no part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Vadose Zone Journal. 2008;7(3):1079–1088. doi: 10.2136/vzj2007.0115. DOI

Jenkinson DS, Rayner JH. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science. 1977;123(5):298–305. doi: 10.1097/00010694-197705000-00005. DOI

Jiménez JJ, Decaëns T, Rossi J-P. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian Llanos. Oikos. 2012;121(6):915–926. doi: 10.1111/j.1600-0706.2012.20428.x. DOI

Jiménez JJ, Lal R. Mechanisms of C sequestration in soils of Latin America. Critical Reviews in Plant Sciences. 2006;25(4):337–365. doi: 10.1080/0735268060094240. DOI

Joergensen RG, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry. 2008;40(12):2977–2991. doi: 10.1016/j.soilbio.2008.08.017. DOI

Johnson D, Martin F, Cairney JWG, Anderson IC. The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytologist. 2012;194(3):614–628. doi: 10.1111/j.1469-8137.2012.04087.x. PubMed DOI

Johnson SN, Rasmann N. Root-feeding insects and their interactions with organisms in the Rhizosphere. Annual Review of Entomology. 2015;60(1):517–535. doi: 10.1146/annurev-ento-010814-020608. PubMed DOI

Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology. 2016;92(11):fiw179. doi: 10.1093/femsec/fiw179. PubMed DOI

Jones DL. Organic acids in the rhizosphere—a critical review. Plant and Soil. 1998;205(1):25–44. doi: 10.1023/A:1004356007312. DOI

Jones CG, Lawton JH, Shachack M. Organisms as ecosystem engineers. Oikos. 1994;69(3):373–386. doi: 10.2307/3545850. DOI

Jouquet P, Mamou L, Lepage M, Velde B. Effects of termites on clay mineral soils: fungus-growing termites as weathering agents. European Journal of Soil Science. 2002;53(4):521–527. doi: 10.1046/j.1365-2389.2002.00492.x. DOI

Jouquet P, Mathieu J, Barot S, Chossai C. Soil engineers as ecosystem heterogeneity drivers. In: Munoz I, editor. Ecology Research Progress. Hauppauge: Nova Science Publishers; 2007.

Jouquet P, Podwojewski P, Bottinelli N, Mathieu J, Ricoy M, Orange D, Tran TD, Valentin C. Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena. 2008;74(1):13–21. doi: 10.1016/j.catena.2007.12.006. DOI

Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D. Influence of termites on ecosystem functioning: ecosystem services provided by termites. European Journal of Soil Biology. 2011;47(4):215–222. doi: 10.1016/j.ejsobi.2011.05.005. DOI

Ju RH, Shen ZR. Review on insect population dynamics simulation models. Acta Ecologica Sinica. 2005;25:2709–2716.

Juan-Ovejero R, Granjel RR, Ramil-Regoc P, Briones MJI. The interplay between abiotic factors and below-ground biological interactions regulates carbon exports from peatlands. Geoderma. 2020;368:114313. doi: 10.1016/j.geoderma.2020.114313. DOI

Julich D, Julich S, Feger KH. Phosphorus fractions in preferential flow pathways and soil matrix in hillslope soils in the Thuringian forest (Central Germany) Journal of Plant Nutrition and Soil Science. 2017;180(3):407–417. doi: 10.1002/jpln.201600305. DOI

Jury WA, Horton R. Soil physics. New York: John Wiley & Sons; 2004. p. 370.

Jury WA, Or D, Pachepsky Y, Vereecken H, Hopmans JW, Ahuja LR, Clothier BE, Bristow KL, Kluitenberg GJ, Moldrup P, Simunek J, Van Genuchten MT, Horton R, Kalbitz KK. Kirkham’s legacy and contemporary challenges in soil physics research, cycling downwards—dissolved organic matter in soils. Soil Science society of America Journal. 2011;75(5):1589–1601. doi: 10.2136/sssaj2011.0115. DOI

Kaiser K, Kalbitz K. Cycling downwards—dissolved organic matter in soils. Soil Biology and Biochemistry. 2012;52:29–32.

Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science. 2000;165(4):277–304. doi: 10.1097/00010694-200004000-00001. DOI

Kaneda S, Frouz J, Baldrian P, Cajthaml T, Krištůfek V. Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter? Applied Soil Ecology. 2013;72:7–13. doi: 10.1016/j.apsoil.2013.05.011. DOI

Keiluweit M, Gee K, Denney A, Fendorf S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biology and Biochemistry. 2018;118:42–50. doi: 10.1016/j.soilbio.2017.12.002. DOI

Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications. 2017;8(1):1771. doi: 10.1038/s41467-017-01406-6. PubMed DOI PMC

Kladivko JE. Tillage systems and soil ecology. Soil and Tillage Research. 2001;61(1–2):61–76. doi: 10.1016/S0167-1987(01)00179-9. DOI

Klapper Variety of microbes as a graphic illustration. 2012. https://pixy.org/4831074/ https://pixy.org/4831074/

Kleber M, Johnson MG. Advances in understanding the molecular structure of soil organic matter. Advances in Agronomy. 2010;106:77–142. doi: 10.1016/S0065-2113(10)06003-7. DOI

Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology. 2011;17(2):1097–1107. doi: 10.1111/j.1365-2486.2010.02278.x. DOI

Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico P. Mineral—organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy. 2015;130:1–140. doi: 10.1016/bs.agron.2014.10.005. DOI

Klok C, Van der Holt A, Bodt J. Population growth and development of the earthworm Lumbricus rubellus in a polluted field soil: possible consequences for the godwit (Limosa limosa) Environmental Toxicology and Chemistry. 2006;25(1):213–219. doi: 10.1897/05-286R.1. PubMed DOI

Komarov A, Chertov O, Bykhovets S, Shaw C, Nadporozhskaya M, Frolov P, Shashkov M, Shanin V, Grabarnik P, Priputina I, Zubkova E. Romul_Hum model of soil organic matter formation coupled with soil biota activity: I. Problem formulation, model description, and testing. Ecological Modelling. 2017;345:113–124.

Korobushkin DI, Gongalsky KB, Tiunov AV. Isotopic niche (δ13С and δ15N values) of soil macrofauna in temperate forests. Rapid Communications in Mass Spectronomy. 2014;28(11):1303–1311. doi: 10.1002/rcm.6903. PubMed DOI

Kratochvil P. Spider isolated. 2019. https://www.publicdomainpictures.net/en/view-image.php?image=20174&picture=spider-isolated https://www.publicdomainpictures.net/en/view-image.php?image=20174&picture=spider-isolated

Kriiska K, Frey J, Asi E, Kabral N, Uri V, Aosaar J, Varik M, Napa Ü, Apuhtin V, Timmusk T, Ostonen I. Variation in annual carbon fluxes affecting the SOC pool in hemiboreal coniferous forests in Estonia. Forest Ecology and Management. 2019;433:419–430. doi: 10.1016/j.foreco.2018.11.026. DOI

Krishna M, Mohan M. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment. 2017;2(4):236–249. doi: 10.1007/s40974-017-0064-9. DOI

Kuka K, Franko U, Rühlmann J. Modelling the impact of pore space distribution on carbon turnover. Ecological Modelling. 2007;208(2–4):295–306. doi: 10.1016/j.ecolmodel.2007.06.002. DOI

Kuraz M, Mayer P, Pech P. Solving the nonlinear Richards equation model with adaptive domain decomposition. Journal of Computational and Applied Mathematics. 2014;270:2–11. doi: 10.1016/j.cam.2014.03.010. DOI

Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry. 2000;32(11–12):1485–1498. doi: 10.1016/S0038-0717(00)00084-5. DOI

Köhne JM, Köhne S, Simůnek J. A review of model applications for structured soils: (a) Water flow and tracer transport. Journal of Contaminant Hydrology. 2009;104(1–4):4–35. doi: 10.1016/j.jconhyd.2008.10.002. PubMed DOI

Landl M, Huber K, Schnepf A, Vanderborght J, Javaux M, Glyn Bengough A, Vereecken H. A new model for root growth in soil with macropores. Plant and Soil. 2017;415(1–2):99–116. doi: 10.1007/s11104-016-3144-2. DOI

Lavelle P. Earthworm activities and the soil system. Biology and Fertility of Soils. 1988;6(3):237–251. doi: 10.1007/BF00260820. DOI

Lavelle P. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research. 1997;27:93–132.

Lavelle P, Barot S, Blouin M, Decaëns T, Jimenez JJ, Jouquet P. Earthworms as key actors in self-organized soil systems. In: Cuddington K, Byers JE, Wilson WG, Hastings A, editors. Ecosystem Engineers: Plants to Protists. Waltham: Academic Press; 2007. p. 405.

Lavelle P, Bignell D, Lepage M. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology. 1997;33(4):159–193.

Lavelle P, Martin A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biology and Biochemistry. 1992;24(12):1491–1498. doi: 10.1016/0038-0717(92)90138-N. DOI

Lavelle P, Spain A. Soil ecology. Dordrecht: Kluwer Academic Publishers; 2001.

Lavelle P, Spain A, Blouin M, Brown G, Decaëns T, Grimaldi M, Jiménez JJ, McKey D, Mathieu J, Velasquez E, Zangerlé A. Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science. 2016;181(3–4):91–109. doi: 10.1097/SS.0000000000000155. DOI

Lavelle P, Spain A, Fonte S, Bedano JC, Blanchart E, Galindo V, Grimaldi M, Jiménez JJ, Velasquez E, Zangerlé A. Soil aggregation, ecosystem engineers and the C cycle. Acta Oecologica. 2020;105:103561.

Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology. 2001;37(1):25–50. doi: 10.1016/S1164-5563(01)01067-6. DOI

Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany. 2004;82(8):1016–1045. doi: 10.1139/b04-060. DOI

Lebrun P. Ecologie et biocénotique de quelques peuplements d’arthropodes édaphiques. Vol. 165. Bruxelles: Institut royal des sciences naturelles de Belgique; 1971. pp. 1–203.

Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528(7580):60–68. doi: 10.1038/nature16069. PubMed DOI

Lehmann A, Rillig MC. Understanding mechanisms of soil biota involvement in soil aggregation: a way forward with saprobic fungi? Soil Biology and Biochemistry. 2015;88:298–302. doi: 10.1016/j.soilbio.2015.06.006. DOI

Lehmann A, Zheng W, Rilliga MC. Soil biota contributions to soil aggregation. Nature Ecology & Evolution. 2017;1(12):1828–1835. doi: 10.1038/s41559-017-0344-y. PubMed DOI PMC

Leitner D, Klepsch S, Knieβ A, Schnepf A. The algorithmic beauty of plant roots – an L-System model for dynamic root growth simulation. Mathematical and Computer Modelling of Dynamical Systems. 2010;16:575–587. doi: 10.1080/13873954.2010.491360. DOI

Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology. 2011;9(2):119–130. doi: 10.1038/nrmicro2504. PubMed DOI

Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology. 1999;27(2–3):175–185. doi: 10.1006/fgbi.1999.1150. PubMed DOI

Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS. Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant and Soil. 2014;374(1–2):73–88. doi: 10.1007/s11104-013-1853-3. DOI

Lesturgez G, Poss R, Hartmann C. Roots of Stylosanthes hamata create macropores in the compact layer of a sandy soil. Plant and Soil. 2004;260(1/2):101–109. doi: 10.1023/B:PLSO.0000030184.24866.aa. DOI

Levy-Booth DJ, Prescott CE, Grayston SJ. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry. 2014;75:11–25. doi: 10.1016/j.soilbio.2014.03.021. DOI

Liao K, Xu S, Zhu Q. Development of ensemble pedotransfer functions for cation exchange capacity of soils of Qingdao in China. Soil Use and Management. 2015;31(4):483–490. doi: 10.1111/sum.12207. DOI

Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist. 2007;173(3):611–620. doi: 10.1111/j.1469-8137.2006.01936.x. PubMed DOI

Liski J, Palosuo T, Peltoniemi M, Sievänen R. Carbon and decomposition model Yasso for forest soils. Ecological Modelling. 2005;189(1–2):168–182. doi: 10.1016/j.ecolmodel.2005.03.005. DOI

Louis BP, Maron P-A, Viaud V, Leterme P, Menasseri-Aubry S. Soil C and N models that integrate microbial diversity. Environmental Chemistry Letters. 2016;14(3):331–344. doi: 10.1007/s10311-016-0571-5. PubMed DOI PMC

Lovegrove BG. Spacing and origin(s) of mima-like earth mounds in the Cape Province of South Africa. Soutth African Journal of Science. 1989;85:108–112.

Lundström US, Van Breemen N, Bain DC, Van Hees PAW, Giesler R, Gustafsson JP, Ilvesniemi H, Karltun E, Melkerud P-A, Olsson M, Riise G, Wahlberg O, Bergelin A, Bishop K, Finlay R, Jongmans AG, Magnusson T, Mannerkoski H, Nordgren A, Nyberg L, Starr M, Tau Strand L. Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries. Geoderma. 2000;94(2–4):335–353. doi: 10.1016/S0016-7061(99)00077-4. DOI

Luxton M. Studies on the oribatid mites of a Danish beech wood soil: I. Nutritional biology. Pedobiologia. 1972;12:434–463.

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 2002;66(3):506–577. doi: 10.1128/MMBR.66.3.506-577.2002. PubMed DOI PMC

Maaß S, Caruso T, Rillig MC. Functional role of microarthropods in soil aggregation. Pedobiologia. 2015;58(2–3):59–63. doi: 10.1016/j.pedobi.2015.03.001. DOI

MacLean SF., Jr . The detritus-based trophic system. In: Brown J, Miller PC, Tieszen LL, Bunnell FL, editors. An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Stroudsburg: Dowden, Hutchinson & Ross, Inc; 1980. pp. 411–457.

Mai TH, Schnepf A, Vereecken H, Vanderborght J. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant and Soil. 2019;439(1–2):273–292. doi: 10.1007/s11104-018-3890-4. DOI

Malamoud K, McBratney AB, Minasny B, Field DJ. Modelling how carbon affects soil structure. Geoderma. 2009;149(1–2):19–26. doi: 10.1016/j.geoderma.2008.10.018. DOI

Malard JJ, Adamowski JF, Díaz MR, Nassar JB, Anandaraja N, Tuy H, Arévalo-Rodriguez LA, Melgar-Quiñonez HR. Agroecological food web modelling to evaluate and design organic and conventional agricultural systems. Ecological Modelling. 2020;421:108961. doi: 10.1016/j.ecolmodel.2020.108961. DOI

Mambelli S, Bird JA, Gleixner G, Dawson TE, Torn MS. Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Organic Geochemistry. 2011;42:1099–1108.

Mankel A, Krause K, Kothe E. Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Trichoderma terreum. Applied and Environmental Microbiology. 2002;68(3):1408–1413. doi: 10.1128/AEM.68.3.1408-1413.2002. PubMed DOI PMC

Mansfield SD, Meder R. Cellulose hydrolysis-the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose. 2003;10(2):159–169. doi: 10.1023/A:1024022710366. DOI

Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry. 2009;41(7):1355–1379. doi: 10.1016/j.soilbio.2009.02.031. DOI

Marashi ARA, Scullion J. Earthworm casts form stable aggregates in physically degraded soils. Biology and Fertility of Soils. 2003;37(6):375–380. doi: 10.1007/s00374-003-0617-2. DOI

Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science. 2008;171(1):91–110. doi: 10.1002/jpln.200700049. DOI

Martin S, Lavelle P. A simulation model of vertical movements of an earthworm population (Millsonia anomala Omodeo, Megascolecidae) in an African savanna (Lamto, Ivory Coast) Soil Biology and Biochemistry. 1992;24(12):1419–1424. doi: 10.1016/0038-0717(92)90127-J. DOI

McBratney AB, Minasny B, Cattle SR, Vervoort RW. From pedotransfer functions to soil inference systems. Geoderma. 2001;109(1–2):41–73. doi: 10.1016/S0016-7061(02)00139-8. DOI

McBrayer JF. Contributions of cryptozoa to forest nutrient cycles. In: Mattson WJ, editor. The Role of Arthropods in Forest Ecosystems: Proceedings in Life Sciences. Berlin: Springer; 1977.

McCormack ML, Crisfield E, Raczka B, Schnekenburger F, Eissenstat DM, Smithwick EAH. Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecological Modelling. 2015;297:107–117. doi: 10.1016/j.ecolmodel.2014.11.013. DOI

McGuire KL, Treseder K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biology and Biochemistry. 2010;42(4):529–535. doi: 10.1016/j.soilbio.2009.11.016. DOI

McInerney M, Little DJ, Bolger T. Effect of earthworm cast formation on the stabilization of organic matter in fine soil fractions. European Journal of Soil Biology. 2001;37(4):251–254. doi: 10.1016/S1164-5563(01)01092-5. DOI

Mc Millan and Healey A quantitative technique for the analysis of the gut contents of Collembola. Revue d’Ecologie et de Biologie du Sol. 1971;8:295–300.

Melillo JM, Aber JD, Muratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 1982;63:621–626.

Meyer A, Grote R, Butterbach-Bahl K. Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes. European Journal of Forest Research. 2012;131(6):1809–1831. doi: 10.1007/s10342-012-0634-5. DOI

Meyer A, Grote R, Polle A, Butterbach-Bahl K. Simulating mycorrhiza contribution to forest C- and N- cycling – the MYCOFON model. Plant and Soil. 2010;327(1–2):493–517. doi: 10.1007/s11104-009-0017-y. DOI

Mikola J. Effects of microbivore species composition and basal resource enrichment on trophic-level biomasses in an experimental microbial-based soil food web. Oecologia. 1998;117(3):396–403. doi: 10.1007/s004420050673. PubMed DOI

Mills AL. Keeping in touch: microbial life on soil particle surfaces. Advances in Agronomy. 2003;78:1–43.

Minasny B, Sulaeman Y, McBratney AB. Is soil carbon disappearing? The Dynamics of Soil Organic Carbon in Java Global Change Biology. 2011;17:1917–1924. doi: 10.1111/j.1365-2486.2010.02324.x. DOI

Mitchell MJ. Population dynamics of oribatid mites (Acari, Cryptostigmata) in an aspen woodland soil. Pedobiologia. 1977;17:305–319.

Moore JAM, Jiang J, Post WM, Classen AT. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model. Ecosphere. 2015;6(3):29. doi: 10.1890/ES14-00301.1. DOI

Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. European Journal of Soil Science. 2003;54(4):655–670. doi: 10.1046/j.1351-0754.2003.0556.x. DOI

Negassa WC, Guber AK, Kravchenko AN, Marsh TL, Hildebrandt B, Rivers ML. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLOS ONE. 2015;10(4):e0123999. doi: 10.1371/journal.pone.0123999. PubMed DOI PMC

Neill C, Gignoux J. Soil organic matter decomposition driven by microbial growth: a simple model for a complex network of interactions. Soil Biology and Biochemistry. 2006;38(4):803–811. doi: 10.1016/j.soilbio.2005.07.007. DOI

Nemani R, Keeling C, Hashimoto H, Jolly W, Piper S, Tucker C, Myneni R, Running S. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science. 2003;300(5625):1560–1563. doi: 10.1126/science.1082750. PubMed DOI

Nielsen U, Ayres E, Wall D, Bardgett R. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science. 2011;62(1):105–116. doi: 10.1111/j.1365-2389.2010.01314.x. DOI

Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist. 2013;198:214–221. PubMed

O’Connor FB. The enchytraeidae. In: Burges A, Raw F, editors. Soil Biology. London: Academic Press; 1967. pp. 213–257.

Oades JM, Waters AG. Aggregate hierarchy in soils. Soil Research. 1991;29(6):815–828. doi: 10.1071/SR9910815. DOI

Oldeman LR, Hakkeling RTA, Sombroek WG. World map of the status of humanInduced soil degradation: an explanatory note. Second Edition. Nairobi: International Soil Reference and Information Center, Wageningen and United Nations Environment Programme; 1991.

Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP. Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Advances in Water Resources. 2007;30(6–7):1505–1527. doi: 10.1016/j.advwatres.2006.05.025. DOI

Orazova MK, Semenova TA, Tiunov AV. The microfungal community of Lumbricus terrestris middens in a linden (Tilia cordata) forest. Pedobiologia. 2003;47(1):27–32. doi: 10.1078/0031-4056-00166. DOI

Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffrey S, Johnson NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, De Souza Moreira FM, Ramirez KS, Scheu S, Singh BK, Six J, Van der Putten WH, Wall DH. Global Soil Biodiversity Atlas. Luxembourg: European Commission; 2016a.

Orgiazzi A, Panagos P, Yigini Y, Dunbar MB, Gardi C, Montanarella L, Ballabio C. A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Science of the Total Environment. 2016b;545–546:11–20. doi: 10.1016/j.scitotenv.2015.12.092. PubMed DOI

Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters. 2011;14(5):493–502. doi: 10.1111/j.1461-0248.2011.01611.x. PubMed DOI

Osler GH, Sommerkorn M. Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology. 2007;88(7):1611–1621. doi: 10.1890/06-1357.1. PubMed DOI

Ostonen I, Truu M, Helmisaari H-S, Lukac M, Borken W, Vanguelova E, Godbold D, Lõhmus K, Zang U, Tedersoo L, Preem J-K, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos A-J, Merilä P, Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu M. Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist. 2017;215(3):977–991. doi: 10.1111/nph.14643. PubMed DOI

O’Neill RV. Indirect estimation of energy fluxes in animal food webs. Journal of Theoretical Biology. 1969;22(2):284–290. doi: 10.1016/0022-5193(69)90006-X. PubMed DOI

Parker WE, Howard JJ. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agricultural and Forest Entomology. 2001;3(2):85–98. doi: 10.1046/j.1461-9563.2001.00094.x. DOI

Parkhurst DL, Appelo CAJ. Description of input and examples for PHREEQC version 3. A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43. 2013. https://pubs.usgs.gov/tm/06/a43/ https://pubs.usgs.gov/tm/06/a43/

Parton WJ, Schimel DS, Cole CV, Ojima DS. Analysis of factors controlling soil organic matter levels in great plains grasslands1. Soil Science Society of America Journal. 1987;51(5):1173–1179. doi: 10.2136/sssaj1987.03615995005100050015x. DOI

Paul EA. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry. 2016;98:109–126. doi: 10.1016/j.soilbio.2016.04.001. DOI

Pausch J, Kramer S, Scharroba A, Scheunemann N, Butenschoen O, Kandeler E, Ruess L. Small but active—pool size does not matter for carbon incorporation in below-ground food webs. Functional Ecology. 2016;30(3):479–789. doi: 10.1111/1365-2435.12512. DOI

Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology. 2018;24(1):1–12. doi: 10.1111/gcb.13850. PubMed DOI

Paustian K, Parton WJ, Persson J. Modeling Soil Organic Matter in Organic-Amended and Nitrogen-Fertilized Long-Term Plots. Soil Science of America Journal. 1992;56:476–488. doi: 10.2136/sssaj1992.03615995005600020023x. DOI

Pelosi C, Bertrand M, Makowski D, Roger-Estrade J. WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecological Modelling. 2008;218(3–4):219–234. doi: 10.1016/j.ecolmodel.2008.07.002. DOI

Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S. Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Global Change Biology. 2014;20(4):1174–1190. doi: 10.1111/gcb.12493. PubMed DOI

Petersen H. The total soil fauna biomass and its composition. Oikos. 1982;39:330–339.

Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 1982;39(3):288–388. doi: 10.2307/3544689. DOI

Pferdmenges J, Breuer L, Julich S, Kraft P. Review of soil phosphorus routines in ecosystem models. Environmental Modelling and Software. 2020;126:104639. doi: 10.1016/j.envsoft.2020.104639. DOI

Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron P-A. Loss in microbial diversity affects nitrogen cycling in soil. ISME Journal. 2013;7(8):1609–1619. doi: 10.1038/ismej.2013.34. PubMed DOI PMC

Phillips LA, Ward V, Jones MD. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME Journal. 2014;8(3):699–713. doi: 10.1038/ismej.2013.195. PubMed DOI PMC

Ponge JF. Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil. 1991;138(1):99–113. doi: 10.1007/BF00011812. DOI

Ponge JF. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry. 2003;35(7):935–945. doi: 10.1016/S0038-0717(03)00149-4. DOI

Postma J, Kuppe C, Owen M, Mellor N, Griffiths M, Bennett J, Lynch J, Watt M. OpenSimRoot: widening the scope and application of root architectural models. New Phytologist. 2017;215(3):1274–1286. doi: 10.1111/nph.14641. PubMed DOI PMC

Potapov AA, Semenina EE, Korotkevich AY, Kuznetsova NA, Tiunov AV. Connecting taxonomy and ecology: trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology and Biochemistry. 2016;101:20–31. doi: 10.1016/j.soilbio.2016.07.002. DOI

Pozo MJ, Lopez-Raez JA, Azcon-Aguilar C, Garcia-Garrido JM. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist. 2015;205:1431–1436. PubMed

Prescott CE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry. 2010;101(1–3):133–149. doi: 10.1007/s10533-010-9439-0. DOI

Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology. 2005;29(1):1–15. doi: 10.1016/j.apsoil.2004.10.003. DOI

Ramirez KS, Döring M, Eisenhauer N, Gardi C, Ladau J, Leff JW, Lentendu G, Lindo Z, Rillig MC, Russell D, Scheu S, St. John MG, De Vries FT, Wubet T, Van der Putten WH, Wall DH. Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution. 2015;3:91.

Ranoarisoa M, Morel P, Andriamananjara CA, Bernard L, Becquer T, Rabeharisoa L, Rahajaharilaza K, Plassard C, Blanchart E, Trap J. Effects of a bacterivorous nematode on rice 32P uptake and root architecture in a high P sorbing ferrallitic soil. Soil Biology and Biochemistry. 2018;122:39–49. doi: 10.1016/j.soilbio.2018.04.002. DOI

Rasse D, Mulder J, Moni C, Chenu C. Carbon turnover kinetics with depth in a French loamy soil. Soil Science Society of America Journal. 2006;70(6):2097–2105. doi: 10.2136/sssaj2006.0056. DOI

Rasse DP, Rumpel C, Dignac M-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil. 2005;269(1–2):341–356. doi: 10.1007/s11104-004-0907-y. DOI

Raynaud X, Jones CG, Barot S. Ecosystem engineering, environmental decay and environmental states of landscapes. Oikos. 2013;122(4):591–600. doi: 10.1111/j.1600-0706.2012.20283.x. DOI

Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytologist. 2003;157:475–492. PubMed

Regelink IC, Weng L, Lair GJ, Comans RNJ. Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: a mechanistic modelling study. European Journal of Soil Science. 2015;66(5):867–875. doi: 10.1111/ejss.12285. DOI

Reichle DE. The role of the soil invertebrates in nutrient cycling. In: Lohm U, Persson T, editors. Soil Organisms as Components of Ecosystems. Proceedings of the VI International Soil Zoology Colloquium of the International Society of Soil Science. Uppsala: Swedish Natural Science Research Council; 1977. pp. 145–156.

Reichstein M, Rey A, Freibauer A, John Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival J-M, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles. 2003;1(4):35. doi: 10.1029/2003GB002035. DOI

Riley WJ, Maggi F, Kleber M, Torn MS, Tang JY, Dwivedi D, Guerry N. Long residence times of rapidly decomposable soil organic matter: application of multi-phase, multicomponent, and vertically resolved model (BAMS1) to soil carbon dynamics. Geoscience Model Development. 2014;7:1335–1355.

Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytologist. 2006;171(1):41–53. doi: 10.1111/j.1469-8137.2006.01750.x. PubMed DOI

Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME Journal. 2013;7(10):2010–2022. doi: 10.1038/ismej.2013.91. PubMed DOI PMC

Robertson AD, Paustian K, Ogle S, Wallenstein MD, Lugato E, Cotrufo MF. Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences. 2019;16(6):1225–1248. doi: 10.5194/bg-16-1225-2019. DOI

Romano N, Palladino M, Chirico GB. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes. Hydrology and Earth System Sciences. 2011;15:3877–3893.

Rousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralisation. Applied and Environmental Microbiology. 2009;75(6):1589–1596. doi: 10.1128/AEM.02775-08. PubMed DOI PMC

Rumpel C, Eusterhuesa K, Kögel-Knabner I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry. 2004;36(1):177–190. doi: 10.1016/j.soilbio.2003.09.005. DOI

Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil. 2011;338(1–2):143–158. doi: 10.1007/s11104-010-0391-5. DOI

Rumpel C, Kögel-Knabner I, Bruhn F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry. 2002;33(10):1131–1142. doi: 10.1016/S0146-6380(02)00088-8. DOI

Rühlmann J. A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant and Soil. 1999;213(1/2):149–160. doi: 10.1023/A:1004552016182. DOI

Samson RI. Effect of feeding by larvae of Inopus rubriceps (Diptera: Stratiomyidae) on development and growth of sugarcane. Journal of Economic Entomology. 2001;94(5):1097–1103. doi: 10.1603/0022-0493-94.5.1097. PubMed DOI

Sanders D, Jones CG, Thébault E, Bouma TJ, Van der Heide T, Van Belzen J, Barot S. Integrating ecosystem engineering and food webs. Oikos. 2014;123(5):513–524. doi: 10.1111/j.1600-0706.2013.01011.x. DOI

Satchell JE. Lumbricidae. In: Burges A, Raw F, editors. Soil Biology. London: Academic Press; 1967. pp. 259–352.

Scheunemann N, Pausch J, Digel C, Kramer S, Scharroba A, Kuzyakov Y, Kandeler E, Ruess L, Butenschoen O, Scheu S. Incorporation of root C and fertilizer N into the food web of an arable field: variations with functional group and energy channel. Food Webs. 2016;9:39–45. doi: 10.1016/j.fooweb.2016.02.006. DOI

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478(7367):49–56. doi: 10.1038/nature10386. PubMed DOI

Schneider AK, Hohenbrink TL, Reck A, Zangerlé A, Schröder B, Zehe E, Van Schaik L. Variability of earthworm-induced biopores and their hydrological effectiveness in space and time. Pedobiologia. 2018;71:8–19. doi: 10.1016/j.pedobi.2018.09.001. DOI

Schneider KS, Migge S, Norton RA, Scheu S, Langel R, Reinekingd A, Maraun M. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N) Soil Biology and Biochemistry. 2004;36(11):1769–1774. doi: 10.1016/j.soilbio.2004.04.033. DOI

Schnepf A, Black CK, Couvreur V, Delory BM, Doussan C, Koch A, Koch T, Javaux M, Landl M, Leitner D, Lobet G, Hieu MT, Meunier F, Petrich L, Postma J, Priesack E, Schmidt V, Vanderborght J, Vereecken H, Weber M. Call for participation: collaborative benchmarking of functional-structural root architecture models—the case of root water uptake. Frontiers in Plant Science. 2020;11:316. doi: 10.3389/fpls.2020.00316. PubMed DOI PMC

Schnepf A, Leitner D, Klepsch S. Modeling phosphorus uptake by a growing and exuding root system A. Vadose Zone Journal. 2012;11(3):1. doi: 10.2136/vzj2012.0001. DOI

Schnepf A, Roose T. Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytologist. 2006;171(3):669–682. PubMed

Schröder T, Tang L, Javaux M, Vanderborght J, Korfgen B, Vereecken H. A grid refinement approach for a 3D soil-root water transfer model. Water Resources Research. 2009;45(10):1597. doi: 10.1029/2009WR007873. DOI

Schröter D, Wolters V, De Ruiter PC. C and N mineralisation in the decomposer food webs of a European forest transect. Oikos. 2003;102(2):294–308. doi: 10.1034/j.1600-0579.2003.12064.x. DOI

Schulmann OP, Tiunov AV. Leaf litter fragmentation by the earthworm Lumbricus terrestris L. Pedobiologia. 1999;43:453–458.

Schwartz N, Carminati A, Javaux M. The impact of mucilage on root water uptake—a numerical study. Water Resources Research. 2016;52(1):264–277. doi: 10.1002/2015WR018150. DOI

Segoli M, De Gryze S, Post W, Six J. Soil aggregate dynamics: a mechanistic model. AGU Fall Meeting Abstracts. 03- 2011. https://www.researchgate.net/publication/258459551_Soil_Aggregate_Dynamics_A_Mechanistic_Model https://www.researchgate.net/publication/258459551_Soil_Aggregate_Dynamics_A_Mechanistic_Model

Seki K, Miyazaki T, Nakano M. Effects of microorganisms on hydraulic conductivity decrease in infiltration. European Journal of Soil Science. 1998;49(2):231–236. doi: 10.1046/j.1365-2389.1998.00152.x. DOI

Setälä H, Martikainen E, Tyynismaa M, Huhta V. Effects of soil fauna on leaching of N and P from experimental systems simulating coniferous forest floor. Biology and Fertility of Soils. 1990;10:170–177.

Shah F, Nicolás C, Bentzer J, Ellström M, Smits MM, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G, Braesel J, Hoffmeister DC, Henrissat B, Ahrén DG, Johansson T, Hibbett DS, Martin FM, Persson P, Tunlid A. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist. 2016;209(4):1705–1719. doi: 10.1111/nph.13722. PubMed DOI PMC

Šimůnek J, Jarvis NJ, Van Genuchten MT, Gärdenäs A. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology. 2003;272(1–4):14–35. doi: 10.1016/S0022-1694(02)00252-4. DOI

Šimůnek J, Jacques D, Twarakavi NKC, van Genuchten MTh. Modeling subsurface flow and contaminant transport as influenced by biological processes at various scales using selected HYDRUS modules. Biologia. 2009;64(3):465–469.

Sinacore K, Hall JS, Potvin C, Royo AA, Ducey MJ, Ashton MS. Unearthing the hidden world of roots: root biomass and architecture differ among species within the same guild. PLOS ONE. 2017;12(10):e0185934. doi: 10.1371/journal.pone.0185934. PubMed DOI PMC

Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 2004;79(1):7–31. doi: 10.1016/j.still.2004.03.008. DOI

Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry. 2014;68:A4–A9. doi: 10.1016/j.soilbio.2013.06.014. DOI

Smith SE, Anderson IC, Smith FA. Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. In: Plaxton WC, Lambers H, editors. Annual Plant Reviews. Vol. 48. John Wiley & Sons ltd; 2015. pp. 409–439.

Smith P, Powlson DS, Glendining MJ, Smith JU. Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology. 1997;3(1):67–79. doi: 10.1046/j.1365-2486.1997.00055.x. DOI

Smith SE, Read DJ. Mycorrhizal Symbiosis. Amsterdam: Academic Press; 2008.

Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience. 2019;12(1):46–53. doi: 10.1038/s41561-018-0258-6. DOI

Soong JL, Nielsen UN. The role of microarthropods in emerging models of soil organic matter. Soil Biology and Biochemistry. 2016;102:37–39. doi: 10.1016/j.soilbio.2016.06.020. DOI

Špaldoňová A, Frouz J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Applied Soil Ecology. 2014;83:186–192. doi: 10.1016/j.apsoil.2014.04.012. DOI

Staddon PL. Insights into mycorrhizal colonisation at elevated CO2: a simple carbon partitioning model. Plant and Soil. 1998;205(2):171–180. doi: 10.1023/A:1004388605110. DOI

Stamati FE, Nikolaidis NP, Banwart S, Blum WEH. A coupled carbon, aggregation, and structure turnover (CAST) model for topsoils. Geoderma. 2013;211–212:51–64. doi: 10.1016/j.geoderma.2013.06.014. DOI

Standen V. The life cycle and annual production of Trichoniscus pusillus pusillus (Crustacea: Isopoda) in a Cheshire Wood. Pedobiologia. 1973;13:273–291.

Stark JM, Firestone MK. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology. 1995;61(1):218–221. doi: 10.1128/AEM.61.1.218-221.1995. PubMed DOI PMC

Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Šimůnek J, Spycher N, Yabusaki SB, Yeh GT. Reactive transport codes for subsurface environmental simulation. Computational Geosciences. 2015;19(3):445–478. doi: 10.1007/s10596-014-9443-x. DOI

Stevens MM, Fox KM, Warren GN, Cullis BR, Coombes NE, Lewina LG. An image analysis technique for assessing resistance in rice cultivars to root-feeding chironomid midge larvae (Diptera: Chironomidae) Field Crops Research. 2000;66(1):25–36. doi: 10.1016/S0378-4290(99)00074-X. DOI

Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, De Remy deCourcellesa V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment. 2013;164:80–99.

Striganova BR. Nutrition of soil saprophages. Moscow: Nauka Science Publications; 1980. p. 243. [in Russian]

Strong DT, De Wever H, Merckx R, Recous S. Spatial location of carbon decomposition in the soil pore system. Soil Science. 2004;5:739–750.

Succurro A, Ebenhöh O. Review and perspective on mathematical modeling of microbial ecosystems. Biochemical Society Transactions. 2018;46(2):403–412. doi: 10.1042/BST20170265. PubMed DOI PMC

Sulman B, Moore J, Abramoff R, Averill C, Kivlin S, Georgiou K, Sridhar B, Hartman MD, Wang G, Wieder WR, Bradford MA, Luo Y, Mayes MA, Morrison E, Riley WJ, Salazar A, Schimel JP, Tang J, Classen AT. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry. 2018;141(2):1–15. doi: 10.1007/s10533-018-0509-z. DOI

Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change. 2014;4(12):1099–1102. doi: 10.1038/nclimate2436. DOI

Sándor R, Barcza Z, Acutis M, Doro L, Hidy D, Köchy M, Minet J, Lellei-Kovács E, Ma S, Perego A, Rolinski S, Ruget F, Sanna M, Seddaiu G, Wu L, Bellocchi G. Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: uncertainties and ensemble performance. European Journal of Agronomy. 2017;88:22–40. doi: 10.1016/j.eja.2016.06.006. DOI

Sándor R, Barcza Z, Hidy D, Lellei-Kovács E, Ma S, Bellocchi G. Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models. Agriculture, Ecosystems & Environment. 2016;215:1–19. doi: 10.1016/j.agee.2015.09.001. DOI

Söderström B. Seasonal fluctuations of active fungal biomass in horizons of a podzolized pine-forest soil in central Sweden. Soil Biology and Biochemistry. 1979;11(2):149–154. doi: 10.1016/0038-0717(79)90093-2. DOI

Söderström B, Read DJ. Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biology and Biochemistry. 1987;19(3):231–236. doi: 10.1016/0038-0717(87)90002-2. DOI

Tagu D, De Bellis R, Balestrini R, De Vries OMH, Piccoli G, Stocchi V, Bonfante P, Martin F. Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytologist. 2001;149(1):127–135. doi: 10.1046/j.1469-8137.2001.00009.x. PubMed DOI

Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology. 1989;70(1):97–104. doi: 10.2307/1938416. DOI

Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS microbiology reviews. 2017;41(5):599–623. doi: 10.1093/femsre/fux039. PubMed DOI PMC

Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews. 2019;94(5):1857–1880. doi: 10.1111/brv.12538. PubMed DOI

Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480):eaba1223. doi: 10.1126/science.aba1223. PubMed DOI

Teshima J, Iwanaga R, Kobayashi T, Ikegami D, Yasutake D, Cho H. An improvement on the BBH model of soil hydrology made to incorporate bioprocesses. Journal of the Faculty of Agriculture, Kyushu University. 2006;51(2):399–402.

Thomsen IK, Schjùnning P, Jensen B, Kristensen K, Christensen BT. Turnover of organic matter in differently textured soils. II. Microbial activity as in ¯uenced by soil water regimes. Geoderma. 1999;89(3–4):199–218. doi: 10.1016/S0016-7061(98)00084-6. DOI

Tian J-H, Pourcher A-M, Bouchez T, Gelhaye E, Peu P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Applied Microbiology and Biotechnology. 2014;98(23):9527–9544. doi: 10.1007/s00253-014-6142-4. PubMed DOI

Tipping E, Michalzik B, Mulder J, Gallardo LJF, Matzner E, Bryant C, Clarke N, Lofts SV, Esteban A. DyDOC, a model to describe carbon dynamics in forest soils. Borggaard, Ole K. (Hrsg.): the proceedings of 8th Nordic IHSS Symposium on humic substances - characterisation, dynamics, transport and effects; 2001. pp. 122–126.

Tipping E, Rowe EC, Evans CD, Mills RTE, Emmett BA, Chaplow JS, Hall JR. N14C: a plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling. 2012;247:11–26. doi: 10.1016/j.ecolmodel.2012.08.002. DOI

Tiunov AV, Scheu S. Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Applied Soil Ecology. 2000;14(1):17–26. doi: 10.1016/S0929-1393(99)00050-5. DOI

Toosi ER, Kravchenko AN, Guber AK, Rivers ML. Pore characteristics regulate priming and fate of carbon from plant residue. Soil Biology and Biochemistry. 2017;113:219–230. doi: 10.1016/j.soilbio.2017.06.014. DOI

Torsvik V, Ovreas L. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology. 2002;5(3):240–245. doi: 10.1016/S1369-5274(02)00324-7. PubMed DOI

Toyota A, Hynst J, Cajthaml T, Frouz J. Soil fauna increase nitrogen loss in tilled soil with legume but reduce nitrogen loss in non-tilled soil without legume. Soil Biology and Biochemistry. 2013;60:105–112. doi: 10.1016/j.soilbio.2013.01.017. DOI

Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil. 2016;398(1–2):1–24. doi: 10.1007/s11104-015-2671-6. DOI

Treonis AM, Grayston SJ, Murray PJ, Cook R, Currie AF, Dawson LA, Gange AC. Impact of invertebrate root feeders on rhizosphere C flow and soil microbial communities. Abstracts 9th International Symposium on Soil Microbial Ecology (ISME 9); 26 August–1 September 2001; Amsterdam. 2001. p. 270.

Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P. Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biology and Biochemistry. 2004;36(3):533–537. doi: 10.1016/j.soilbio.2003.10.015. DOI

Treseder KK. Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany. 2016;94(6):417–423. doi: 10.1139/cjb-2015-0245. DOI

Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J, Waldrop MP. Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry. 2012;109(1–3):7–18. doi: 10.1007/s10533-011-9636-5. DOI

Treseder KK, Cross A. Global distributions of arbuscular mycorrhizal fungi. Ecosystems. 2006;9(2):305–316. doi: 10.1007/s10021-005-0110-x. DOI

Tuomi M, Rasinmäki J, Repo A, Vanhala P, Liski J. Soil carbon model Yasso07 graphical user interface. Environmental Modelling & Software. 2011;26(11):1358–1362. doi: 10.1016/j.envsoft.2011.05.009. DOI

Tupek B, Launiainen S, Peltoniemi M, Sievänen R, Perttunen J, Kulmala L, Penttilä T, Lindroos A-J, Hashimoto S, Lehtonen A. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference. European Journal of Soil Science. 2019;14:2636. doi: 10.1111/ejss.12805. DOI

Uroz S, Calvaruso C, Turpault MP, Frey-Klett P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology. 2009;17(8):378–387. doi: 10.1016/j.tim.2009.05.004. PubMed DOI

Van Breemen N, Boyer EW, Goodale CL, Jaworski NA, Paustian K, Seitzinger SP, Lajtha K, Mayer B, Van Dam D, Howarth RW, Nadelhoffer KJ, Eve M, Billen G. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry. 2002;57(1):267–293. doi: 10.1023/A:1015775225913. DOI

Van Breemen N, Buurman P. Soil formation. The Netherlands: Kluwer Academic Publishers; 2002.

Van der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters. 2008;11(3):296–310. doi: 10.1111/j.1461-0248.2007.01139.x. PubMed DOI

Van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist. 2015;205(4):1406–1423. doi: 10.1111/nph.13288. PubMed DOI

Van der Wal A, Geydan TD, Kuyper TW, De Boer W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews. 2013;37(4):477–494. doi: 10.1111/1574-6976.12001. PubMed DOI

Van Genuchten MT, Leij FJ, Wu L. Characterization and measurement of the hydraulic properties of unsaturated porous media. Riverside: University of California; 1999.

Van Looy K, Bouma J, Herbst M, Koestel J, Minasny B, Mishra U, Vereecken H. Pedotransfer functions in earth system science: challenges and perspectives. Reviews of Geophysics. 2017;55(4):1199–1256. doi: 10.1002/2017RG000581. DOI

Vereecken H, Schnepf A, Hopmans J, Javaux M, Or D, Roose T, Vanderborght J, Young M, Amelung W, Aitkenhead M, Allison S, Assouline S, Baveye P, Berli M, Brüggemann N, Finke P, Flury M, Gaiser T, Govers G, Young I. Modeling soil processes: review, key challenges and new perspectives. Vadose Zone Journal. 2016;15:1–57.

Vereecken H, Weihermuller L, Assouline SI, Verhoef A, Herbst M, Archer N, Mohanty B, Montzka C, Vanderborght J. Infiltration from the Pedon to global grid scales: an overview and outlook for land surface modeling. Vadose Zone Journal. 2019;18(1):1–53. doi: 10.2136/vzj2018.10.0191. DOI

Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science. 2006;57(4):426–445. doi: 10.1111/j.1365-2389.2006.00809.x. DOI

Von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. Journal of Plant Nutrition and Soil Science. 2008;171(1):111–124. doi: 10.1002/jpln.200700047. DOI

Vorpahl P, Moenickes S, Richter O. Modelling of spatio-temporal population dynamics of earthworms under wetland conditions—an integrated approach. Ecological Modelling. 2009;220(24):3647–3657. doi: 10.1016/j.ecolmodel.2009.03.012. DOI

Wagg CS, Bendera F, Widmerc F, Van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America. 2013;111(14):5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC

Wallander H, Goransson H, Rosengren U. Production, standing biomass and natural abundance of 15N and13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139(1):89–97. doi: 10.1007/s00442-003-1477-z. PubMed DOI

Wallwork JA. Ecology of soil animals. London: McGraw-Hill; 1970.

Wardle DA, Yeates GW, Watson RN, Nicholson KS. The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant and Soil. 1995;170(1):35–43. doi: 10.1007/BF02183053. DOI

Waring BG, Averill C, Hawkes CV. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters. 2013;16(7):887–894. doi: 10.1111/ele.12125. PubMed DOI

Warren JM, Brooks JR, Meinzer FC, Eberhart JL. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytologist. 2008;178(2):382–394. doi: 10.1111/j.1469-8137.2008.02377.x. PubMed DOI

Weng L, Van Riemsdijk WH, Hiemstra T. Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption. Environmental Science & Technology. 2008;42(23):8747–8752. doi: 10.1021/es801631d. PubMed DOI

Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft J-U, Rainey PB, Freilich S, Schuster S, Milferstedt K, van der Meer JR, Groβkopf T, Huisman J, Free A, Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Soyer OS, Isaac Newton Institute Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME Journal. 2016;10(11):2557–2568. doi: 10.1038/ismej.2016.45. PubMed DOI PMC

Wieder WR, Grandy AS, Kallenbach CM, Bonan GB. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences. 2014;11(14):3899–3917. doi: 10.5194/bg-11-3899-2014. DOI

Wieder WR, Grandy AS, Kallenbach CM, Taylor PG, Bonan GB. Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geoscientific Model Development. 2015;8(6):1789–1808. doi: 10.5194/gmd-8-1789-2015. DOI

Wilkinson MT, Richards PJ, Humphreys GS. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Science Reviews. 2009;97(1–4):257–272. doi: 10.1016/j.earscirev.2009.09.005. DOI

Williams BL, Griffiths BS. Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms. Soil Biology and Biochemistry. 1989;21(2):183–188. doi: 10.1016/0038-0717(89)90093-X. DOI

Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters. 2009;12(5):452–461. doi: 10.1111/j.1461-0248.2009.01303.x. PubMed DOI

Yang X, Ricciuto D, Thornton P, Shi X, Xu M, Hoffman F, Norby R. The effects of phosphorus cycle dynamics on carbon sources and sinks in the amazon region: a modeling study using ELM v1. Journal of Geophysical Research: Biogeosciences. 2019;124(12):3686–3698. doi: 10.1029/2019JG005082. DOI

Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF. Faunal and microbial diversity in three welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology. 1997;34(2):453–470. doi: 10.2307/2404890. DOI

Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology. 1993;25(3):315. PubMed PMC

Yin H, Wheeler E, Phillips RP. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry. 2014;78:213–221. doi: 10.1016/j.soilbio.2014.07.022. DOI

Yudina A, Kuzyakov Y. Saving the face of soil aggregates. Global Change Biology. 2019;25(11):3574–3577. doi: 10.1111/gcb.14779. PubMed DOI

Zhang D, Hui D, Luo Y, Zhou G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology. 2008;1(2):85–93. doi: 10.1093/jpe/rtn002. DOI

Zhang XK, Li Q, Liang WJ, Zhang M, Bao XL, Xie ZB. Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere. 2013;23(1):98–103. doi: 10.1016/S1002-0160(12)60084-8. DOI

Zhou G, Xu S, Ciais P, Manzoni S, Fang J, Yu G, Tang X, Zhou P, Wang W, Yan J, Wang G, Ma K, Li S, Du S, Han S, Ma Y, Zhang D, Liu J, Liu S, Chu G, Zhang Q, Li Y, Huang W, Ren H, Lu X, Chen X. Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review. 2019;6(4):746–757. doi: 10.1093/nsr/nwz045. PubMed DOI PMC

Zvereva EL, Kozlov MV. Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia. 2012;169(2):441–452. doi: 10.1007/s00442-011-2210-y. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

. 2022 Oct 17 ; 12 (1) : 17362. [epub] 20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...